We show that Dejean’s conjecture holds for . This brings the final resolution of the conjecture by the approach of Moulin Ollagnier within range of the computationally feasible.
@article{ITA_2009__43_4_775_0,
author = {Currie, James and Rampersad, Narad},
title = {Dejean's conjecture holds for $\sf {N\ge 27}$},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
volume = {43},
year = {2009},
pages = {775-778},
doi = {10.1051/ita/2009017},
mrnumber = {2589992},
zbl = {pre05650347},
language = {en},
url = {http://dml.mathdoc.fr/item/ITA_2009__43_4_775_0}
}
Currie, James; Rampersad, Narad. Dejean’s conjecture holds for $\sf {N\ge 27}$. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) pp. 775-778. doi : 10.1051/ita/2009017. http://gdmltest.u-ga.fr/item/ITA_2009__43_4_775_0/
[1] , Uniformly growing -th powerfree homomorphisms. Theoret. Comput. Sci. 23 (1983) 69-82. | MR 693069 | Zbl 0508.68051
[2] , Non-repetitive sequences on three symbols. Quart. J. Math. Oxford 34 (1983) 145-149. | MR 698202 | Zbl 0528.05004
[3] , On Dejean's conjecture over large alphabets. Theoret. Comput. Sci. 385 (2007) 137-151. | MR 2356248 | Zbl 1124.68087
[4] and , Dejean’s conjecture holds for . Theoret. Comput. Sci. 410 (2009) 2885-2888. | MR 2543342 | Zbl 1173.68050
[5] , , A proof of Dejean's conjecture, http://arxiv.org/pdf/0905.1129v3. | Zbl 1215.68192
[6] , Sur un théorème de Thue. J. Combin. Theory Ser. A 13 (1972) 90-99. | MR 300959 | Zbl 0245.20052
[7] , and , A generalization of repetition threshold. Theoret. Comput. Sci. 345 (2005) 359-369. | MR 2171619 | Zbl 1079.68082
[8] , On critical exponents in fixed points of non-erasing morphisms. Theoret. Comput. Sci. 376 (2007) 70-88. | MR 2316392 | Zbl 1111.68058
[9] , Combinatorics on Words, Encyclopedia of Mathematics and its Applications 17. Addison-Wesley, Reading (1983). | MR 675953 | Zbl 0514.20045
[10] and , Repetitions in the Fibonacci infinite word. RAIRO-Theor. Inf. Appl. 26 (1992) 199-204. | Numdam | MR 1170322 | Zbl 0761.68078
[11] and , Dejean's conjecture and Sturmian words. Eur. J. Combin. 28 (2007) 876-890. | MR 2300768 | Zbl 1111.68096
[12] , Proof of Dejean's conjecture for alphabets with 5, 6, 7, 8, 9, 10 and 11 letters. Theoret. Comput. Sci. 95 (1992) 187-205. | MR 1156042 | Zbl 0745.68085
[13] , À propos d'une conjecture de F. Dejean sur les répétitions dans les mots. Discrete Appl. Math. 7 (1984) 297-311. | MR 736893 | Zbl 0536.68072
[14] , Last cases of Dejean's Conjecture, http://www.labri.fr/perso/rao/publi/dejean.ps.
[15] , Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana 7 (1906) 1-22. | JFM 37.0066.17
[16] , Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana 1 (1912) 1-67. | JFM 44.0462.01