We study infinite words over an alphabet satisfying the property , where denotes the number of palindromic factors of length occurring in the language of . We study also infinite words satisfying a stronger property For binary words, the properties and coincide and these properties characterize sturmian words, i.e., words with the complexity for any . In this paper, we focus on ternary infinite words with the language closed under reversal. For such words , we prove that if for any , then satisfies the property and moreover is rich in palindromes. Also a sufficient condition for the property is given. We construct a word demonstrating that on a ternary alphabet does not imply .
@article{ITA_2009__43_4_687_0, author = {Balkov\'a, L'ubom\'\i ra and Pelantov\'a, Edita and Starosta, \v St\v ep\'an}, title = {Palindromes in infinite ternary words}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {43}, year = {2009}, pages = {687-702}, doi = {10.1051/ita/2009016}, mrnumber = {2589989}, zbl = {pre05650344}, zbl = {1191.68476}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2009__43_4_687_0} }
Balková, L'ubomíra; Pelantová, Edita; Starosta, Štěpán. Palindromes in infinite ternary words. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) pp. 687-702. doi : 10.1051/ita/2009016. http://gdmltest.u-ga.fr/item/ITA_2009__43_4_687_0/
[1] Représentation géométrique de suites de complexité . Bull. Soc. Math. France 119 (1991) 199-215. | Numdam | MR 1116845 | Zbl 0789.28011
and ,[2] Factor versus palindromic complexity of uniformly recurrent infinite words. Theoret. Comput. Sci. 380 (2007) 266-275. | MR 2330997 | Zbl 1119.68137
, and ,[3] Sequences with constant number of return words. Monatsh. Math. 155 (2008) 251-263. | MR 2461579 | Zbl 1185.68503 | Zbl pre05566999
, and ,[4] A connection between palindromic and factor complexity using return words. Adv. Appl. Math. 42 (2009) 60-74. | MR 2475313 | Zbl 1160.68027
, , and ,[5] Complexity and special factors. Bull. Belg. Math. Soc. Simon Stevin 4 (1997) 67-88. | MR 1440670 | Zbl 0921.68065
,[6] Palindromes and Sturmian words. Theoret. Comput. Sci. 223 (1999) 73-85. | MR 1704637 | Zbl 0930.68116
, ,[7] Episturmian words and episturmian morphisms. Theoret. Comput. Sci. 276 (2002) 281-313. | MR 1896357 | Zbl 1002.68116
and ,[8] Symbolic dynamics II - Sturmian trajectories. Amer. J. Math. 62 (1940) 1-42. | JFM 66.0188.03 | MR 745
and ,[9] Sequences with subword complexity . J. Number Theor. 46 (1993) 196-213. | MR 1269252 | Zbl 0804.11023
,[10] A characterization of Sturmian words by return words. Eur. J. Combin. 22 (2001) 263-275. | MR 1808196 | Zbl 0968.68124
,