On the proper intervalization of colored caterpillar trees
Àlvarez, Carme ; Serna, Maria
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009), p. 667-686 / Harvested from Numdam

This paper studies the computational complexity of the proper interval colored graph problem (PICG), when the input graph is a colored caterpillar, parameterized by hair length. In order prove our result we establish a close relationship between the PICG and a graph layout problem the proper colored layout problem (PCLP). We show a dichotomy: the PICG and the PCLP are NP-complete for colored caterpillars of hair length 2, while both problems are in P for colored caterpillars of hair length <2. For the hardness results we provide a reduction from the multiprocessor scheduling problem, while the polynomial time results follow from a characterization in terms of forbidden subgraphs.

Publié le : 2009-01-01
DOI : https://doi.org/10.1051/ita/2009014
Classification:  68Q25,  68W10
@article{ITA_2009__43_4_667_0,
     author = {\`Alvarez, Carme and Serna, Maria},
     title = {On the proper intervalization of colored caterpillar trees},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {43},
     year = {2009},
     pages = {667-686},
     doi = {10.1051/ita/2009014},
     mrnumber = {2589988},
     zbl = {pre05650343},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_2009__43_4_667_0}
}
Àlvarez, Carme; Serna, Maria. On the proper intervalization of colored caterpillar trees. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) pp. 667-686. doi : 10.1051/ita/2009014. http://gdmltest.u-ga.fr/item/ITA_2009__43_4_667_0/

[1] C. Àlvarez, J. Díaz and M. Serna, The hardness of intervalizing four colored caterpillars. Discrete Math. 235 (2001) 19-27. | MR 1829833 | Zbl 0977.05055

[2] C. Àlvarez, J. Díaz and M. Serna, Intervalizing colored graphs is NP-complete for caterpillars with hair length 2. Technical Report LSI 98-9-R, Universitat Politècnica de Catalunya (1998).

[3] H. Bodlaender, M.R. Fellows and M.T. Hallet, Beyond NP-completeness for problems of bounded width: hardness for the W-hierarchy, in 26th ACM Symposium on Theory of Computing (1994) 449-458.

[4] J. Díaz, A.M. Gibbons, M.S. Paterson and J. Torán, The minsumcut problem, in Algorithms and Datastructure, edited by F. Dehen, R.J. Sack and N. Santoro. Lect. Notes Comput. Sci. 519 (1991) 65-79. | MR 1146690 | Zbl 0764.68064

[5] M.J. Dinneen, VLSI Layouts and DNA physical mappings. Technical Report, Los Alamos National Laboratory (1996).

[6] M.R. Fellows, M.T. Hallet and W.T. Wareham, DNA physical mapping: Three ways difficult, in Algorithms-ESA'93, edited by T. Lengauer. Lect. Notes Comput. Sci. 726 (1993) 157-168. | MR 1284723

[7] P.W. Goldberg, M.C. Golumbic, H. Kaplan and R. Shamir, Four strikes against physical mapping of DNA. J. Comput. Biol. 2 (1995) 139-152.

[8] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979). | MR 519066 | Zbl 0411.68039

[9] M.C. Golumbic, H. Kaplan and R. Shamir, On the complexity of DNA physical mapping. Adv. Appl. Math. 15 (1994) 203-215. | MR 1288801 | Zbl 0806.92007

[10] M.C. Golumbic, H. Kaplan and R. Shamir, Graph sandwich problems. J. Algorithms 19 (1995) 449-473. | MR 1355650 | Zbl 0838.68054

[11] M.C. Golumbic, Algorithmic graph theory and perfect graphs. Academic Press, New York (1980). | MR 562306 | Zbl 0541.05054

[12] M.C. Golumbic and R. Shamir, Complexity and algorithms for reasoning about time: A graph theoretical approach. J. ACM 40 (1993) 1108-1113. | MR 1368960 | Zbl 0795.68095

[13] D. Kuo and G.J. Chang, The profile minimization problem in trees. SIAM J. Comput. 23 (1994) 71-81. | MR 1258995 | Zbl 0794.05117

[14] H. Kaplan and R. Shamir, Pathwidth, bandwidth and completion problems to proper interval graphs with small cliques. SIAM J. Comput. 25 (1996) 540-561. | MR 1390027 | Zbl 0852.68072

[15] H. Kaplan, R. Shamir and R.E. Tarjan, Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Comput. 28 (1999) 1906-1922. | MR 1694136 | Zbl 0928.68124

[16] B. Monien, The bandwidth minimization problem for caterpillars with hair length 3 is NP-complete. SIAM J. Algebr. Discrete Methods 7 (1986) 505-512. | MR 857587 | Zbl 0624.68059