We prove that every sturmian word has infinitely many prefixes of the form where and In passing, we give a very simple proof of the known fact that every sturmian word begins in arbitrarily long squares.
@article{ITA_2009__43_3_615_0, author = {Dubickas, Art\=uras}, title = {Squares and cubes in sturmian sequences}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {43}, year = {2009}, pages = {615-624}, doi = {10.1051/ita/2009005}, mrnumber = {2541133}, zbl = {1176.68150}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2009__43_3_615_0} }
Dubickas, Artūras. Squares and cubes in sturmian sequences. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) pp. 615-624. doi : 10.1051/ita/2009005. http://gdmltest.u-ga.fr/item/ITA_2009__43_3_615_0/
[1] On the complexity of algebraic numbers I. Expansion in integer bases. Ann. Math. 165 (2007) 547-565. | MR 2299740 | Zbl pre05180742
and ,[2] Dynamics for -shifts and Diophantine approximation. Ergod. Theory Dyn. Syst. 27 (2007) 1695-1711. | MR 2371591 | Zbl 1140.11035
and ,[3] On patterns occuring in binary algebraic numbers. Proc. Amer. Math. Soc. 136 (2008) 3105-3109. | MR 2407073 | Zbl 1151.11036
and ,[4] Transcendence of Sturmian or morphic continued fractions. J. Number Theory 91 (2001) 39-66. | MR 1869317 | Zbl 0998.11036
, , and ,[5] Automatic sequences, Theory, applications, generalizations. CUP, Cambridge (2003). | MR 1997038 | Zbl 1086.11015
and ,[6] On the index of Sturmian words. In Jewels are Forever, Contributions on theoretical computer science in honor of Arto Salomaa, J. Karhumäki et al., eds. Springer, Berlin (1999) 287-294. | MR 1719097 | Zbl 0982.11010
,[7] Combinatorics on words - a tutorial, in Current trends in theoretical computer science, The challenge of the new century, Vol. 2, Formal models and semantics, G. Paun, G. Rozenberg, A. Salomaa, eds. World Scientific, River Edge, NJ (2004) 415-475. | MR 1965433 | Zbl 1065.68078
and ,[8] Initial powers of Sturmian sequences. Acta Arith. 122 (2006) 315-347. | MR 2234421 | Zbl 1117.37005
, and ,[9] On extremal properties of the Fibonacci word. RAIRO-Theor. Inf. Appl. 42 (2008) 701-715. | Numdam | MR 2458702 | Zbl 1155.68062
,[10] Sequences with minimal block growth. Math. Syst. Theor. 7 (1973) 138-153. | MR 322838 | Zbl 0256.54028
and ,[11] For each there is an infinite binary word with critical exponent , Electron. J. Combin. 15 (2008) 5 p. | MR 2438590 | Zbl pre05540896
and ,[12] Sturmian words: structure, combinatorics and their arithmetics. Theoret. Comput. Sci. 183 (1997) 45-82. | MR 1468450 | Zbl 0911.68098
,[13] Uniform spectral properties of one-dimensional quasicrystals, III 212 (2000) 191-204. | MR 1764367 | Zbl 1045.81024
, and ,[14] Powers of a rational number modulo cannot lie in a small interval (to appear). | MR 2496462 | Zbl pre05538708
,[15] Transcendence of numbers with low complexity expansion. J. Number Theory 67 (1997) 146-161. | MR 1486494 | Zbl 0895.11029
and ,[16] Determination of by its sequence of differences. Canad. Math. Bull. 21 (1978) 441-446. | MR 523586 | Zbl 0401.10018
, and ,[17] On continued fractions, substitutions and characteristic sequences. Jpn J. Math. 16 (1990) 287-306. | MR 1091163 | Zbl 0721.11009
and ,[18] Return words in Sturmian and episturmian words. RAIRO-Theor. Inf. Appl. 34 (2000) 343-356. | Numdam | MR 1829231 | Zbl 0987.68055
and ,[19] Every real number greater than 1 is a critical exponent. Theoret. Comput. Sci. 381 (2007) 177-182. | MR 2347401 | Zbl pre05186613
and ,[20] Algebraic combinatorics on words, Encyclopedia of Mathematics and Its Applications, Vol. 90. CUP, Cambridge (2002). | MR 1905123 | Zbl 1001.68093
,[21] An unsolved problem on the powers of . J. Austral. Math. Soc. 8 (1968) 313-321. | MR 227109 | Zbl 0155.09501
,[22] On the number of factors of Sturmian words. Theoret. Comput. Sci. 82 (1991) 71-84. | MR 1112109 | Zbl 0728.68093
,[23] Symbolic dynamics II: Sturmian sequences. Amer. J. Math. 62 (1940) 1-42. | JFM 66.0188.03 | MR 745
and ,[24] Substitutions in dynamics, arithmetics and combinatorics. Lect. Notes Math. 1794 (2002). | MR 1970385 | Zbl 1014.11015
,[25] Beatty sequences, continued fractions, and certain shift operators. Canad. Math. Bull. 19 (1976) 473-482. | MR 444558 | Zbl 0359.10028
,[26] Sturmian words and words with a critical exponent. Theoret. Comput. Sci. 242 (2000) 283-300. | MR 1769782 | Zbl 0944.68148
,[27] A characterization of Sturmian words by return words. Eur. J. Combin. 22 (2001) 263-275. | MR 1808196 | Zbl 0968.68124
,