Tree automata and automata on linear orderings
Bruyère, Véronique ; Carton, Olivier ; Sénizergues, Géraud
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009), p. 321-338 / Harvested from Numdam

We show that the inclusion problem is decidable for rational languages of words indexed by scattered countable linear orderings. The method leans on a reduction to the decidability of the monadic second order theory of the infinite binary tree [9].

Publié le : 2009-01-01
DOI : https://doi.org/10.1051/ita/2009009
Classification:  68Q45,  03D05
@article{ITA_2009__43_2_321_0,
     author = {Bruy\`ere, V\'eronique and Carton, Olivier and S\'enizergues, G\'eraud},
     title = {Tree automata and automata on linear orderings},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {43},
     year = {2009},
     pages = {321-338},
     doi = {10.1051/ita/2009009},
     mrnumber = {2512262},
     zbl = {1166.68022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_2009__43_2_321_0}
}
Bruyère, Véronique; Carton, Olivier; Sénizergues, Géraud. Tree automata and automata on linear orderings. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) pp. 321-338. doi : 10.1051/ita/2009009. http://gdmltest.u-ga.fr/item/ITA_2009__43_2_321_0/

[1] V. Bruyère and O. Carton, Automata on linear orderings, edited by J. Sgall, A. Pultr and P. Kolman, MFCS'2001. Lect. Notes Comput. Sci. 2136 (2001) 236-247. | MR 1907015 | Zbl 0999.68100

[2] V. Bruyère, O. Carton and G. Sénizergues, Tree automata and automata on linear orderings, in Proceedings WORDS'03. Lect. Notes Comput. Sci. 27 (2003) 222-231. TUCS General Publication. | MR 2081356 | Zbl 1040.68072

[3] V. Bruyère and O. Carton, Automata on linear orderings. J. Comput. System Sci. 73 (2007) 1-24. | MR 2279028 | Zbl 1178.68307

[4] O. Carton, Accessibility in automata on scattered linear orderings, edited by K. Diks and W. Rytter, MFCS'2002. Lect. Notes Comput. Sci. 2420 (2002) 155-164. | MR 2064454 | Zbl 1014.68081

[5] B. Courcelle, Frontiers of infinite trees. RAIRO Theoretical Informatics 12 (1978) 319-337. | Numdam | MR 517634 | Zbl 0411.68065

[6] F. Hausdorff, Grundzüge einer Theorie der geordneten Mengen. Math. Ann. 65 (1908) 435-505. | JFM 39.0099.01 | MR 1511478

[7] S. Heilbrunner, An algorithm for the solution of fixed-point equations for infinite words. RAIRO Theoretical Informatics 14 (1980) 131-141. | Numdam | MR 581673 | Zbl 0433.68062

[8] S.C. Kleene, Representation of events in nerve nets and finite automata, edited by C.E. Shannon, Automata studies, 3-41. Princeton University Press, Princeton (1956). | MR 77478

[9] M.O. Rabin, Decidability of second-order theories and automata on infinite trees. Trans. Amer. Math. Soc. 141 (1969) 1-35. | MR 246760 | Zbl 0221.02031

[10] C. Rispal and O. Carton, Complementation of rational sets on countable scattered linear orderings. J. Found. Comput. Sci. 16 (2005) 767-786. | MR 2159389 | Zbl 1161.68551

[11] J.G. Rosenstein, Linear Orderings. Academic Press, New York (1982). | MR 662564 | Zbl 0488.04002

[12] W. Thomas, On frontiers of regular sets. RAIRO Theoretical Informatics 20 (1986) 371-381. | Numdam | MR 880841 | Zbl 0639.68071