We tackle the problem of studying which kind of functions can occur as complexity functions of formal languages of a certain type. We prove that an important narrow subclass of rational languages contains languages of polynomial complexity of any integer degree over any non-trivial alphabet.
@article{ITA_2009__43_2_269_0, author = {Shur, Arseny M.}, title = {Polynomial languages with finite antidictionaries}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {43}, year = {2009}, pages = {269-279}, doi = {10.1051/ita:2008028}, mrnumber = {2512259}, zbl = {1166.68026}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2009__43_2_269_0} }
Shur, Arseny M. Polynomial languages with finite antidictionaries. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) pp. 269-279. doi : 10.1051/ita:2008028. http://gdmltest.u-ga.fr/item/ITA_2009__43_2_269_0/
[1] Uniformly growing -th power free homomorphisms. Theoret. Comput. Sci. 23 (1983) 69-82. | MR 693069 | Zbl 0508.68051
,[2] Combinatorics of words, in Handbook of formal languages, Vol. 1, Chap. 6, edited by G. Rosenberg, A. Salomaa. Springer, Berlin (1997), 329-438. | MR 1469998
and ,[3] Automata and forbidden words. Inform. Process. Lett. 67 (1998) 111-117. | MR 1638178
, and ,[4] On subword complexities of homomorphic images of languages. RAIRO-Theor. Inf. Appl. 16 (1982) 303-316. | Numdam | MR 707633 | Zbl 0495.68069
and ,[5] Repetition-free words. Theoret. Comput. Sci. 44 (1986) 175-197. | MR 860554 | Zbl 0596.20058
,[6] Combinatorial complexity of rational languages. Discr. Anal. Oper. Res., Ser. 1 12 (2005) 78-99 (in Russian). | MR 2168157 | Zbl 1249.68107
,