In this paper, we define the notion of biRFSA which is a residual finate state automaton (RFSA) whose the reverse is also an RFSA. The languages recognized by such automata are called biRFSA languages. We prove that the canonical RFSA of a biRFSA language is a minimal NFA for this language and that each minimal NFA for this language is a sub-automaton of the canonical RFSA. This leads to a characterization of the family of biRFSA languages. In the second part of this paper, we define the family of biseparable automata. We prove that every biseparable NFA is uniquely minimal among all NFAs recognizing a same language, improving the result of H. Tamm and E. Ukkonen for bideterministic automata.
@article{ITA_2009__43_2_221_0, author = {Latteux, Michel and Roos, Yves and Terlutte, Alain}, title = {Minimal NFA and biRFSA languages}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {43}, year = {2009}, pages = {221-237}, doi = {10.1051/ita:2008022}, mrnumber = {2512256}, zbl = {1166.68025}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2009__43_2_221_0} }
Latteux, Michel; Roos, Yves; Terlutte, Alain. Minimal NFA and biRFSA languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) pp. 221-237. doi : 10.1051/ita:2008022. http://gdmltest.u-ga.fr/item/ITA_2009__43_2_221_0/
[1] Inference of reversible languages. J. ACM 29 (1982) 741-765. | MR 666776 | Zbl 0485.68066
.[2] A note about minimal non deterministic finite automata. Bull. EATCS 47 (1992) 166-169. | Zbl 0751.68038
, , and .[3] On the minimalization of non-deterministic automaton. Technical report, Laboratoire de Calcul de la Faculté des Sciences de Lille (1970).
.[4] NFA reduction algorithms by means of regular inequalities. Theoretical Computer Science 327 (2004) 241-253. | MR 2054364 | Zbl 1071.68039
and .[5] Residual finite state automata. In Proceedings of STACS 2001 2010. Springer-Verlag, Dresden (2001) 144-157. | MR 1890786 | Zbl 0976.68089
, , and .[6] Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979). | MR 519066 | Zbl 0411.68039
and .[7] Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading, Massachusetts (1979). | MR 645539 | Zbl 0426.68001
and .[8] On the equivalence, containment, and covering problems for the regular and context-free languages. Journal of Computer and System Sciences 12 (1976) 222-268. | MR 400785 | Zbl 0334.68044
, , and .[9] Identification of biRFSA languages. Theoretical Computer Science 356 (2006) 212-223. | MR 2217839 | Zbl 1160.68417
, , , and .[10] BiRFSA languages and minimal NFAs. Technical Report GRAPPA-0205, GRAppA, (2006).
, , and .[11] Computing small nondeterministic automata. In U.H. Engberg, K.G. Larsen, and A. Skou, Eds., Workshop on Tools and Algorithms for the Construction and Analysis of Systems (1995).
and .[12] Finite automata. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (B). Elsevier (1990) 1-57. | MR 1127186 | Zbl 0900.68312
.[13] On reversible automata. In Proceedings of the first LATIN conference, Saõ-Paulo. Lecture Notes in Computer Science 583. Springer Verlag (1992) 401-416. | MR 1253368
.[14] Word problems requiring exponential time(preliminary report). In STOC '73: Proceedings of the fifth annual ACM symposium on Theory of computing. ACM Press, NY, USA (1973) 1-9. | MR 418518 | Zbl 0359.68050
and .[15] Bideterministic automata and minimal representations of regular languages. Theoretical Computer Science 328 (2004) 135-149. | MR 2101157 | Zbl 1071.68052
and .