Let be an infinite fixed point of a binary -uniform morphism , and let be the critical exponent of . We give necessary and sufficient conditions for to be bounded, and an explicit formula to compute it when it is. In particular, we show that is always rational. We also sketch an extension of our method to non-uniform morphisms over general alphabets.
@article{ITA_2009__43_1_41_0, author = {Krieger, Dalia}, title = {On critical exponents in fixed points of $k$-uniform binary morphisms}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {43}, year = {2009}, pages = {41-68}, doi = {10.1051/ita:2007042}, mrnumber = {2483444}, zbl = {1170.68034}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2009__43_1_41_0} }
Krieger, Dalia. On critical exponents in fixed points of $k$-uniform binary morphisms. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) pp. 41-68. doi : 10.1051/ita:2007042. http://gdmltest.u-ga.fr/item/ITA_2009__43_1_41_0/
[1] Automatic Sequences: Theory, Applications, Generalizations. Cambridge University Press (2003). | MR 1997038 | Zbl 1086.11015
and ,[2] Axel Thue's Papers on Repetitions in Words: A Translation. Publications du Laboratoire de Combinatoire et d'Informatique Mathématique 20, Université du Québec à Montréal (1995).
,[3] On the Index of Sturmian Words, in Jewels are forever. Springer, Berlin (1999) 287-294. | MR 1719097 | Zbl 0982.11010
,[4] Some properties of the factors of Sturmian sequences. Theoret. Comput. Sci. 304 (2003) 365-385. | MR 1992341 | Zbl 1045.68109
and ,[5] Special factors, periodicity, and an application to Sturmian words. Acta Informatica 36 (2000) 983-1006. | MR 1776146 | Zbl 0956.68119
and ,[6] An algorithm to test if a given circular HD0L-language avoids a pattern, in IFIP World Computer Congress'94 1 (1994) 459-464. | MR 1318456
,[7] The index of Sturmian sequences. Eur. J. Combin. 23 (2002) 23-29. | MR 1878771 | Zbl 1002.11020
and ,[8] Repetition of subwords in D0L languages. Inform. Control 59 (1983) 13-35. | MR 760154 | Zbl 0549.68076
and ,[9] Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc. 16 (1965) 109-114. | MR 174934 | Zbl 0131.30203
and ,[10] On uniform DOL words. STACS'98 1373 (1998) 544-554. | MR 1650675
,[11] Fractional powers in Sturmian words. Theoret. Comput. Sci. 255 (2001) 363-376. | MR 1819081 | Zbl 0974.68159
and ,[12] On combinatorial properties of the Arshon sequence. Discrete Appl. Math. 114 (2001) 155-169. | MR 1865589 | Zbl 0995.68506
and ,[13] Repetitiveness of languages generated by morphisms. Theoret. Comput. Sci. 240 (2000) 337-378. | MR 1776378 | Zbl 0947.68086
and ,[14] On critical exponents in fixed points of binary k-uniform morphisms, in STACS 2006: 23rd Annual Symposium on Theoretical Aspects of Computer Science, edited by B. Durand and W. Thomas. Lect. Notes. Comput. Sci. 3884 (2006) 104-114. | MR 2249361 | Zbl 1137.68047
,[15] On critical exponents in fixed points of non-erasing morphisms. Theoret. Comput. Sci. 376 (2007) 70-88. | MR 2316392 | Zbl 1111.68058
,[16] Algebraic Combinatorics on Words, Vol. 90 of Encyclopedia of Mathematics and Its Applications. Cambridge University Press (2002). | MR 1905123 | Zbl 1001.68093
,[17] The equation in a free group. Michigan Math. J. 9 (1962) 289-298. | MR 162838 | Zbl 0106.02204
and ,[18] Infinite words with linear subword complexity. Theoret. Comput. Sci. 65 (1989) 221-242. | MR 1020489 | Zbl 0682.68083
,[19] Repetitions in the Fibonacci infinite word. RAIRO-Theor. Inf. Appl. 26 (1992) 199-204. | Numdam | MR 1170322 | Zbl 0761.68078
and ,[20] If a D0L language is -power free then it is circular. ICALP'93. Lect. Notes Comput. Sci. 700 (1993) 507-518. | MR 1252430
and ,[21] Puissances de mots et reconnaissabilité des points fixes d'une substitution. Theoret. Comput. Sci. 99 (1992) 327-334. | MR 1168468 | Zbl 0763.68049
,[22] Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912) 1-67. | JFM 44.0462.01
,[23] Sturmian Words and Words with Critical Exponent. Theoret. Comput. Sci. 242 (2000) 283-300. | MR 1769782 | Zbl 0944.68148
,