We study the palindromic complexity of infinite words , the fixed points of the substitution over a binary alphabet, , , with , which are canonically associated with quadratic non-simple Parry numbers .
@article{ITA_2009__43_1_145_0, author = {Balkov\'a, L'ubom\'\i ra and Mas\'akov\'a, Zuzana}, title = {Palindromic complexity of infinite words associated with non-simple Parry numbers}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {43}, year = {2009}, pages = {145-163}, doi = {10.1051/ita:2008005}, mrnumber = {2483448}, zbl = {1156.68043}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2009__43_1_145_0} }
Balková, L'ubomíra; Masáková, Zuzana. Palindromic complexity of infinite words associated with non-simple Parry numbers. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) pp. 145-163. doi : 10.1051/ita:2008005. http://gdmltest.u-ga.fr/item/ITA_2009__43_1_145_0/
[1] Palindromic complexity of infinite words associated with simple Parry numbers. Annales de l'Institut Fourier 56 (2006) 2131-2160. | Numdam | MR 2290777 | Zbl 1121.68089
, , and ,[2] Factor versus palindromic complexity of uniformly recurrent infinite words. Theor. Comp. Sci. 380 (2007) 266-275. | MR 2330997 | Zbl 1119.68137
, and ,[3] L’. Balková, Complexity for infinite words associated with quadratic non-simple Parry numbers. J. Geom. Sym. Phys. 7 (2006) 1-11. | MR 2290122 | Zbl 1117.68058
[4] L’. Balková, E. Pelantová and O. Turek, Combinatorial and arithmetical properties of infinite words associated with non-simple quadratic Parry numbers. RAIRO-Theor. Inf. Appl. 41 (2007) 307-328. | Numdam | MR 2354360 | Zbl 1144.11009
[5] L’. Balková, E. Pelantová and W. Steiner, Sequences with constant number of return words. Monatshefte fur Mathematik, to appear. | Zbl pre05566999
[6] Étude sur le -développement et applications. Mémoire de D.E.A., Université de la Méditerrannée Aix-Marseille (2002).
,[7] Beta-integers as natural counting systems for quasicrystals. J. Phys. A 31 (1998) 6449-6472. | MR 1644115 | Zbl 0941.52019
, , and ,[8] Combinatorial properties of Arnoux-Rauzy subshifts and applications to Schrödinger operators. Rev. Math. Phys. 15 (2003) 745-763. | MR 2018286 | Zbl 1081.81521
and ,[9] Palindrome complexity bounds for primitive substitution sequences. Discrete Math. 222 (2000) 259-267. | MR 1771405 | Zbl 0962.68141
and ,[10] Substitutions et -systèmes de numération. Theoret. Comput. Sci. 137 (1995) 219-236. | MR 1311222 | Zbl 0872.11017
,[11] Complexity of infinite words associated with beta-expansions. RAIRO-Theor. Inf. Appl. 38 (2004), 163-185; Corrigendum. RAIRO-Theor. Inf. Appl. 38 (2004) 269-271. | Numdam | Numdam | MR 2076404 | Zbl 1104.11013
, and ,[12] Infinite special branches in words associated with beta-expansions. Discrete Math. Theor. Comput. Sci. 9 (2007) 125-144. | MR 2306524 | Zbl 1165.11012
, and ,[13] Singular continuous spectrum for palindromic Schrödinger operators. Commun. Math. Phys. 174 (1995) 149-159. | MR 1372804 | Zbl 0839.11009
, and ,[14] Geometric models for quasicrystals I. Delone sets of finite type. Discrete Comput. Geom. 21 (1999) 161-191. | MR 1668082 | Zbl 0924.68190
,[15] Quasicrystals, Diophantine approximation, and algebraic numbers, in Beyond Quasicrystals, edited by F. Axel, D. Gratias. EDP Sciences, Les Ulis; Springer, Berlin (1995) 6-13. | MR 1420415 | Zbl 0881.11059
,[16] On the beta-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416. | MR 142719 | Zbl 0099.28103
,[17] Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493. | MR 97374 | Zbl 0079.08901
,[18] On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc. 12 (1980) 269-278. | MR 576976 | Zbl 0494.10040
,[19] Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53 (1984) 1951-1954.
, , and ,[20] Groups, tilings, and finite state automata. Geometry supercomputer project research report GCG1, University of Minnesota (1989).
,[21] Balance properties of the fixed point of the substitution associated to quadratic simple Pisot numbers. RAIRO-Theor. Inf. Appl. 41 (2007) 123-135. | Numdam | MR 2350639 | Zbl 1146.68410
,