We study the palindromic complexity of infinite words , the fixed points of the substitution over a binary alphabet, , , with , which are canonically associated with quadratic non-simple Parry numbers .
@article{ITA_2009__43_1_145_0,
author = {Balkov\'a, L'ubom\'\i ra and Mas\'akov\'a, Zuzana},
title = {Palindromic complexity of infinite words associated with non-simple Parry numbers},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
volume = {43},
year = {2009},
pages = {145-163},
doi = {10.1051/ita:2008005},
mrnumber = {2483448},
zbl = {1156.68043},
language = {en},
url = {http://dml.mathdoc.fr/item/ITA_2009__43_1_145_0}
}
Balková, L'ubomíra; Masáková, Zuzana. Palindromic complexity of infinite words associated with non-simple Parry numbers. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) pp. 145-163. doi : 10.1051/ita:2008005. http://gdmltest.u-ga.fr/item/ITA_2009__43_1_145_0/
[1] , , and , Palindromic complexity of infinite words associated with simple Parry numbers. Annales de l'Institut Fourier 56 (2006) 2131-2160. | Numdam | MR 2290777 | Zbl 1121.68089
[2] , and , Factor versus palindromic complexity of uniformly recurrent infinite words. Theor. Comp. Sci. 380 (2007) 266-275. | MR 2330997 | Zbl 1119.68137
[3] L’. Balková, Complexity for infinite words associated with quadratic non-simple Parry numbers. J. Geom. Sym. Phys. 7 (2006) 1-11. | MR 2290122 | Zbl 1117.68058
[4] L’. Balková, E. Pelantová and O. Turek, Combinatorial and arithmetical properties of infinite words associated with non-simple quadratic Parry numbers. RAIRO-Theor. Inf. Appl. 41 (2007) 307-328. | Numdam | MR 2354360 | Zbl 1144.11009
[5] L’. Balková, E. Pelantová and W. Steiner, Sequences with constant number of return words. Monatshefte fur Mathematik, to appear. | Zbl pre05566999
[6] , Étude sur le -développement et applications. Mémoire de D.E.A., Université de la Méditerrannée Aix-Marseille (2002).
[7] , , and , Beta-integers as natural counting systems for quasicrystals. J. Phys. A 31 (1998) 6449-6472. | MR 1644115 | Zbl 0941.52019
[8] and , Combinatorial properties of Arnoux-Rauzy subshifts and applications to Schrödinger operators. Rev. Math. Phys. 15 (2003) 745-763. | MR 2018286 | Zbl 1081.81521
[9] and , Palindrome complexity bounds for primitive substitution sequences. Discrete Math. 222 (2000) 259-267. | MR 1771405 | Zbl 0962.68141
[10] , Substitutions et -systèmes de numération. Theoret. Comput. Sci. 137 (1995) 219-236. | MR 1311222 | Zbl 0872.11017
[11] , and , Complexity of infinite words associated with beta-expansions. RAIRO-Theor. Inf. Appl. 38 (2004), 163-185; Corrigendum. RAIRO-Theor. Inf. Appl. 38 (2004) 269-271. | Numdam | Numdam | MR 2076404 | Zbl 1104.11013
[12] , and , Infinite special branches in words associated with beta-expansions. Discrete Math. Theor. Comput. Sci. 9 (2007) 125-144. | MR 2306524 | Zbl 1165.11012
[13] , and , Singular continuous spectrum for palindromic Schrödinger operators. Commun. Math. Phys. 174 (1995) 149-159. | MR 1372804 | Zbl 0839.11009
[14] , Geometric models for quasicrystals I. Delone sets of finite type. Discrete Comput. Geom. 21 (1999) 161-191. | MR 1668082 | Zbl 0924.68190
[15] , Quasicrystals, Diophantine approximation, and algebraic numbers, in Beyond Quasicrystals, edited by F. Axel, D. Gratias. EDP Sciences, Les Ulis; Springer, Berlin (1995) 6-13. | MR 1420415 | Zbl 0881.11059
[16] , On the beta-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416. | MR 142719 | Zbl 0099.28103
[17] , Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493. | MR 97374 | Zbl 0079.08901
[18] , On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc. 12 (1980) 269-278. | MR 576976 | Zbl 0494.10040
[19] , , and , Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53 (1984) 1951-1954.
[20] , Groups, tilings, and finite state automata. Geometry supercomputer project research report GCG1, University of Minnesota (1989).
[21] , Balance properties of the fixed point of the substitution associated to quadratic simple Pisot numbers. RAIRO-Theor. Inf. Appl. 41 (2007) 123-135. | Numdam | MR 2350639 | Zbl 1146.68410