In this paper, we characterize the substitutions over a three-letter alphabet which generate a ultimately periodic sequence.
@article{ITA_2008__42_4_747_0, author = {Tan, Bo and Wen, Zhi-Ying}, title = {Periodicity problem of substitutions over ternary alphabets}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {42}, year = {2008}, pages = {747-762}, doi = {10.1051/ita:2007057}, mrnumber = {2458705}, zbl = {pre05363217}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2008__42_4_747_0} }
Tan, Bo; Wen, Zhi-Ying. Periodicity problem of substitutions over ternary alphabets. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) pp. 747-762. doi : 10.1051/ita:2007057. http://gdmltest.u-ga.fr/item/ITA_2008__42_4_747_0/
[1] Uniqueness theorem for periodic functions. Proc. Amer. Math. Soc. 16 (1965) 109-114. | MR 174934 | Zbl 0131.30203
and ,[2] On the periodicity of morphisms on free monoids. RAIRO-Theor. Inf. Appl. 20 (1986) 47-54. | Numdam | MR 849965 | Zbl 0608.68065
and ,[3] Fixed languages and the adult language of 0L schemes. Int. J. Comput. Math. 10 (1981) 103-107. | MR 645626 | Zbl 0472.68034
,[4] Periodicity and ultimate periodicity of D0L systems. Theor. Comput. Sci. 82 (1991) 19-33. | MR 1112106 | Zbl 0729.68038
,[5] Combinatorics on Words. Encyclopedia of Mathematics and its Applications, Vol. 17, Addison-Wesley (1983). | MR 675953 | Zbl 0514.20045
,[6] Decidability of periodicity for infinite words. RAIRO-Theor. Inf. Appl. 20 (1986) 43-46. | Numdam | MR 849964 | Zbl 0617.68063
,[7] The Mathematical Theory of L Systems. Academic Press, New York (1980). | MR 561711 | Zbl 0508.68031
and ,[8] An effective solution to the D0L periodicity problem in the binary case. EATCS Bull. 36 (1988) 137-151. | Zbl 0678.68072
,