The (Look and Say) derivative of a word is obtained by writing the number of consecutive equal letters when the word is spelled from left to right. For example, (two , one , two ). We start the study of the behaviour of binary words generated by morphisms under the operator, focusing in particular on the Fibonacci word.
@article{ITA_2008__42_4_729_0, author = {S\'e\'ebold, Patrice}, title = {Look and Say Fibonacci}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {42}, year = {2008}, pages = {729-746}, doi = {10.1051/ita:2007060}, mrnumber = {2458704}, zbl = {1155.68071}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2008__42_4_729_0} }
Séébold, Patrice. Look and Say Fibonacci. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) pp. 729-746. doi : 10.1051/ita:2007060. http://gdmltest.u-ga.fr/item/ITA_2008__42_4_729_0/
[1] Automatic sequences: theory, applications, generalizations. Cambridge University Press (2003). | MR 1997038 | Zbl 1086.11015
and ,[2] Démonstration de l'existence de suites asymétriques infinies. Mat. Sb. 44 (1937) 769-777 (in Russian), 777-779 (French summary). | JFM 63.0928.01 | Zbl 0018.11503
,[3] Mots sans carré et morphismes itérés. Discrete Math. 29 (1980). 235-244. | MR 560766 | Zbl 0444.20050
,[4] Fibonacci words - a survey1986) 13-27. | Zbl 0589.68053
,[5] A characterization of Sturmian morphisms, MFCS'93, Gdansk (Poland). Lect. Notes Comput. Sci. 711 (1993) 281-290. | MR 1265070 | Zbl 0925.11026
and ,[6] A remark on morphic Sturmian words. RAIRO-Theor. Inf. Appl. 28 (1994) 255-263. | Numdam | MR 1282447 | Zbl 0883.68104
and ,[7] Combinatorial properties of smooth infinite words. Theor. Comput. Sci. 352 (2006) 306-317. | MR 2207527 | Zbl 1116.11014
, , and ,[8] Uniform tag sequences. Math. Syst. Theory 6 (1972) 164-192. | MR 457011 | Zbl 0253.02029
,[9] The weird and wonderful chemistry of audioactive decay, in Open problems in communication and computation, edited by T.M. Cover, B. Gopinath. Springer-Verlag, New-York (1987) 173-188. See also Eureka 46 (1986) 5-18. | MR 922073
,[10] À propos d'une itération sur chaînes de caractères numériques. Laboratoire d'Analyse Numérique et d'Optimisation. Université Lille 1, Research Report ANO 293 (1993).
,[11] Chaînes alphanumériques ; cycles et points fixes. Laboratoire d'Analyse Numérique et d'Optimisation. Université Lille 1, Research Report ANO 301 (1993).
,[12] Mots autodescriptifs et co-descriptifs. Laboratoire d'Analyse Numérique et d'Optimisation. Université Lille 1, Research Report ANO 332 (1994).
,[13] Combinatorics on Words, Encyclopedia of Mathematics and Applications, Vol. 17. Addison-Wesley, Reading, Mass. (1983). Reprinted in the Cambridge Mathematical Library, Cambridge University Press (1997). | MR 1475463 | Zbl 0514.20045
,[14] Algebraic Combinatorics on Words, Encyclopedia of Mathematics and its Applications, Vol. 90. Cambridge University Press (2002). | MR 1905123 | Zbl 1001.68093
,[15] Lyndon factorization of sturmian words. Discrete Math. 210 (2000) 137-149. | MR 1731611 | Zbl 0946.68113
,[16] Hiérarchie et fermeture de certaines classes de tag-systèmes. Acta Informatica 20 (1983) 179-196. | MR 727164 | Zbl 0507.68046
,[17] On morphisms preserving infinite Lyndon words. Discrete Math. Theor. Comput. Sci. 9 (2007) 89-108. | MR 2306522 | Zbl 1152.68490
,[18] Handbook of Formal Languages, Vol. 1, edited by G. Rozenberg, A. Salomaa. Springer (1997). | MR 1469992 | Zbl 0866.68057
[19] On the conjugation of standard morphisms. Theor. Comput. Sci. 195 (1998) 91-109. | MR 1603835 | Zbl 0981.68104
,[20] About some overlap-free morphisms on a -letter alphabet. J. Autom. Lang. Comb. 7 (2002) 579-597. | MR 1990460 | Zbl 1095.68090
,[21] Infinite Lyndon words. Inform. Process Lett. 50 (1994) 101-104. | MR 1281048 | Zbl 0803.68093
, , and ,