We introduce natural generalizations of two well-known dynamical systems, the Sand Piles Model and the Brylawski's model. We describe their order structure, their reachable configuration's characterization, their fixed points and their maximal and minimal length's chains. Finally, we present an induced model generating the set of unimodal sequences which amongst other corollaries, implies that this set is equipped with a lattice structure.
@article{ITA_2008__42_3_631_0, author = {Thi Ha Duong Phan}, title = {Two sided sand piles model and unimodal sequences}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {42}, year = {2008}, pages = {631-646}, doi = {10.1051/ita:2008019}, mrnumber = {2434039}, zbl = {1149.68408}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2008__42_3_631_0} }
Thi Ha Duong Phan. Two sided sand piles model and unimodal sequences. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) pp. 631-646. doi : 10.1051/ita:2008019. http://gdmltest.u-ga.fr/item/ITA_2008__42_3_631_0/
[1] Disks, ball, and walls: analysis of a combinatorial game. Amer. Math. Monthly 96 (1989) 481-493. | MR 999411 | Zbl 0693.90110
, , , , , and .[2] Self-organized criticality. Phys. Rev. A 38 (1988) 364-374. | MR 949160
, , and .[3] Paralel chip firing games on graphs. Theoret. Comput. Sci. 92 (1992) 291-300. | MR 1148575 | Zbl 0745.05054
and .[4] Chip-firing games on graphes. Eur .J. Combin. 12 (1991) 283-291. | MR 1120415 | Zbl 0729.05048
, , and .[5] Introduction to greedoids. Matroid applications, N. White, Ed. Cambridge University Press (1991) 284-357. | MR 1165545 | Zbl 0772.05026
and .[6] Log-concave and unimodal sequences in algebra, combinatorics and geometry: an update. Contemporary Mathematics 178 (1994) 71-84. | MR 1310575 | Zbl 0813.05007
.[7] The lattice of interger partitions. Discrete Mathematics 6 (1973) 201-219. | MR 325405 | Zbl 0283.06003
.[8] Introduction to Lattices and Order. Cambridge University Press (1990). | MR 1058437 | Zbl 0701.06001
and .[9] Bidimensional sand pile and ice pile models. PUMA 17 (2006) 71-96. | MR 2380349
, , , and .[10] Advances in symmetric sandpiles. Fundamenta Informaticae 20 (2006) 1-22. | MR 2278727 | Zbl 1155.82320
, , and .[11] Games on line graphes and sand piles. Theoret. Comput. Sci. 115 (1993) 321-349. | MR 1224440 | Zbl 0785.90120
and .[12] Lattice structure and convergence of a game of cards. Ann. Combin. 6 (2002) 327-335. | MR 1980343 | Zbl 1093.06001
, , and .[13] Sandpiles and order structure of integer partitions. Discrete Appl. Math. 117 (2002) 51-64. | MR 1881267 | Zbl 0998.05005
, , and .[14] Longest chains in the lattice of integer partitions ordered by majorization. Eur. J. Combin. 7 (1986) 1-10. | MR 850140 | Zbl 0605.05003
and .[15] Structure of some sand piles model. Theoret. Comput. Sci, 262 (2001) 525-556. | MR 1836234 | Zbl 0983.68085
, , , and .[16] The lattice of integer partitions and its infinite extension. To appear in Discrete Mathematics (2008).
and .[17] PhD thesis. Université Paris VII (1999).
.[18] Balancing vectors in the max norm. Combinatorica 6 (1986) 55-65. | MR 856644 | Zbl 0593.90110
.[19] Log-cocave and unimodal sequences in algebra, combinatorics and geometry. Graph theory and its applications: East and West (Jinan 1986). Ann. New York Acad. Sci. 576 (1989). | MR 1110850 | Zbl 0792.05008
.