A language is literally idempotent in case that if and only if , for each , . Varieties of literally idempotent languages result naturally by taking all literally idempotent languages in a classical (positive) variety or by considering a certain closure operator on classes of languages. We initiate the systematic study of such varieties. Various classes of literally idempotent languages can be characterized using syntactic methods. A starting example is the class of all finite unions of where are subsets of a given alphabet .
@article{ITA_2008__42_3_583_0, author = {Kl\'\i ma, Ond\v rej and Pol\'ak, Libor}, title = {On varieties of literally idempotent languages}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {42}, year = {2008}, pages = {583-598}, doi = {10.1051/ita:2008020}, mrnumber = {2434036}, zbl = {1151.68032}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2008__42_3_583_0} }
Klíma, Ondřej; Polák, Libor. On varieties of literally idempotent languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) pp. 583-598. doi : 10.1051/ita:2008020. http://gdmltest.u-ga.fr/item/ITA_2008__42_3_583_0/
[1] Finite Semigroups and Universal Algebra. World Scientific (1994). | MR 1331143 | Zbl 0844.20039
,[2] On the expressive power of temporal logic. J. Comput. System Sci. 46 (1993) 271-294. | MR 1228808 | Zbl 0784.03014
, and ,[3] Extended temporal logic on finite words and wreath product of monoids with distinguished generators, Proc. DLT 02. Lect. Notes Comput. Sci. 2450 (2003) 43-58. | MR 2177331 | Zbl 1015.03025
,[4] Temporal logic with cyclic counting and the degree of aperiodicity of finite automata. Acta Cybernetica 16 (2003) 1-28. | MR 1990143 | Zbl 1027.68074
and ,[5] Regular languages defined by Lindström quantifiers. RAIRO-Theor. Inf. Appl. 37 (2003) 197-242. | Numdam | Zbl 1046.20042
and ,[6] The stuttering principle revisited. Acta Informatica 41 (2005) 415-434. | MR 2150128 | Zbl 1079.03008
and ,[7] Equationaltion of pseudovarieties of homomorphisms. RAIRO-Theor. Inf. Appl. 37 (2003) 243-254. | Numdam | MR 2021316 | Zbl 1045.20049
,[8] Stutter-invariant temporal properties are expressible without the next-time operator. Inform. Process. Lett. 63 (1997) 243-246. | MR 1475336
and ,[9] Varieties of Formal Languages. Plenum (1986). | MR 912694 | Zbl 0632.68069
,[10] Syntactic semigroups, Chapter 10 in Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa, Springer (1997). | MR 1470002
,[11] On logical descriptions of recognizable languages, Proc. Latin 2002. Lecture Notes Comput. Sci. 2286 (2002) 528-538. | MR 1966148 | Zbl 1059.03034
,[12] Nesting until and since in linear temporal logic. Theor. Comput. Syst. 37 (2003) 111-131. | MR 2038405 | Zbl 1130.03014
and ,[13] Regular languages, Chapter 2 in Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa, Springer (1997). | MR 1470017
,