Parikh test sets for commutative languages
Holub, Štěpán
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008), p. 525-537 / Harvested from Numdam

A set TL is a Parikh test set of L if c(T) is a test set of c(L). We give a characterization of Parikh test sets for arbitrary language in terms of its Parikh basis, and the coincidence graph of letters.

Publié le : 2008-01-01
DOI : https://doi.org/10.1051/ita:2008011
Classification:  68R15
@article{ITA_2008__42_3_525_0,
     author = {Holub, \v St\v ep\'an},
     title = {Parikh test sets for commutative languages},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {42},
     year = {2008},
     pages = {525-537},
     doi = {10.1051/ita:2008011},
     mrnumber = {2434033},
     zbl = {1149.68068},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_2008__42_3_525_0}
}
Holub, Štěpán. Parikh test sets for commutative languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) pp. 525-537. doi : 10.1051/ita:2008011. http://gdmltest.u-ga.fr/item/ITA_2008__42_3_525_0/

[1] Ismo Hakala and Juha Kortelainen, Polynomial size test sets for commutative languages. RAIRO-Theor. Inf. Appl. 31 (1997) 291-304. | Numdam | MR 1483261 | Zbl 0889.68091

[2] Štěpán Holub and Juha Kortelainen, Linear size test sets for certain commutative languages. RAIRO-Theor. Inf. Appl. 35 (2001) 453-475. | Numdam | MR 1908866 | Zbl 1010.68103

[3] Michel Latteux, Rational cones and commutations. In Machines, languages, and complexity (Smolenice, 1988). Lect. Notes Comput. Sci. 381 (1989) 37-54. | MR 1037563