A new algebraic invariant for weak equivalence of sofic subshifts
Chaubard, Laura ; Costa, Alfredo
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008), p. 481-502 / Harvested from Numdam

It is studied how taking the inverse image by a sliding block code affects the syntactic semigroup of a sofic subshift. The main tool are ζ-semigroups, considered as recognition structures for sofic subshifts. A new algebraic invariant is obtained for weak equivalence of sofic subshifts, by determining which classes of sofic subshifts naturally defined by pseudovarieties of finite semigroups are closed under weak equivalence. Among such classes are the classes of almost finite type subshifts and aperiodic subshifts. The algebraic invariant is compared with other robust conjugacy invariants.

Publié le : 2008-01-01
DOI : https://doi.org/10.1051/ita:2008015
Classification:  20M07,  37B10,  20M35
@article{ITA_2008__42_3_481_0,
     author = {Chaubard, Laura and Costa, Alfredo},
     title = {A new algebraic invariant for weak equivalence of sofic subshifts},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {42},
     year = {2008},
     pages = {481-502},
     doi = {10.1051/ita:2008015},
     mrnumber = {2434031},
     zbl = {1155.37009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_2008__42_3_481_0}
}
Chaubard, Laura; Costa, Alfredo. A new algebraic invariant for weak equivalence of sofic subshifts. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) pp. 481-502. doi : 10.1051/ita:2008015. http://gdmltest.u-ga.fr/item/ITA_2008__42_3_481_0/

[1] J. Almeida, Finite semigroups and universal algebra, World Scientific, Singapore (1995), English translation. | MR 1331143 | Zbl 0844.20039

[2] M.-P. Béal, F. Fiorenzi, and D. Perrin, A hierarchy of shift equivalent sofic shifts. Theoret. Comput. Sci. 345 (2005) 190-205. | MR 2171610 | Zbl 1079.68048

[3] M.-P. Béal, F. Fiorenzi, and D. Perrin, The syntactic graph of a sofic shift is invariant under shift equivalence. Int. J. Algebra Comput. 16 (2006), 443-460. | MR 2241616 | Zbl 1098.68062

[4] M.-P. Béal and D. Perrin, A weak equivalence between shifts of finite type. Adv. Appl. Math. 29 (2002) 2, 162-171. | MR 1928096 | Zbl 1018.37007

[5] D. Beauquier, Minimal automaton for a factorial transitive rational language. Theoret. Comput. Sci. 67 (1985), 65-73. | MR 1015085 | Zbl 0679.68110

[6] F. Blanchard and G. Hansel, Systèmes codés. Theoret. Comput. Sci. 44 (1986), 17-49. | MR 858689 | Zbl 0601.68056

[7] M. Boyle and W. Krieger, Almost markov and shift equivalent sofic systems, Proceedings of Maryland Special Year in Dynamics 1986-87 (J.C. Alexander, ed.). Lect. Notes Math. 1342 (1988), pp. 33-93. | MR 970547 | Zbl 0664.28007

[8] M.-P. Béal, Codage symbolique, Masson (1993).

[9] O. Carton, Wreath product and infinite words. J. Pure Appl. Algebra 153 (2000), 129-150. | MR 1780739 | Zbl 0987.20034

[10] L. Chaubard, L‘équivalence faible des systèmes sofiques, Master's thesis, LIAFA, Université Paris VII, July 2003, Rapport de stage de DEA.

[11] A. Costa, Pseudovarieties defining classes of sofic subshifts closed under taking shift equivalent subshifts. J. Pure Appl. Algebra 209 (2007), 517-530. | MR 2293324 | Zbl 1130.20043

[12] S. Eilenberg, Automata, languages and machines, vol. B, Academic Press, New York, 1976. | MR 530383 | Zbl 0359.94067

[13] R. Fischer, Sofic systems and graphs. Monatsh. Math. 80 (1975), 179-186. | MR 407235 | Zbl 0314.54043

[14] G. A. Hedlund, Endomorphims and automorphisms of the shift dynamical system. Math. Syst. Theor. 3 (1969), 320-375. | MR 259881 | Zbl 0182.56901

[15] W. Krieger, On sofic systems. i. Israel J. Math. 48 (1984), 305-330. | MR 776312 | Zbl 0573.54032

[16] D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge (1996). | MR 1369092 | Zbl 1106.37301

[17] M. Nasu, Topological conjugacy for sofic systems. Ergod. Theory Dyn. Syst. 6 (1986), 265-280. | MR 857201 | Zbl 0607.54026

[18] D. Perrin and J.-E. Pin, Infinite words, Pure and Applied Mathematics, No. 141, Elsevier, London, 2004. | Zbl 1094.68052

[19] J.-E. Pin, Varieties of formal languages, Plenum, London (1986), English translation. | MR 912694 | Zbl 0632.68069

[20] J.-E. Pin, Syntactic semigroups, Handbook of Language Theory (G. Rozenberg and A. Salomaa, eds.), Springer (1997). | MR 1470002