Dejean's conjecture and letter frequency
Chalopin, Jérémie ; Ochem, Pascal
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008), p. 477-480 / Harvested from Numdam

We prove two cases of a strong version of Dejean’s conjecture involving extremal letter frequencies. The results are that there exist an infinite 5 4 + -free word over a 5 letter alphabet with letter frequency 1 6 and an infinite 6 5 + -free word over a 6 letter alphabet with letter frequency 1 5.

Publié le : 2008-01-01
DOI : https://doi.org/10.1051/ita:2008013
Classification:  68R15
@article{ITA_2008__42_3_477_0,
     author = {Chalopin, J\'er\'emie and Ochem, Pascal},
     title = {Dejean's conjecture and letter frequency},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {42},
     year = {2008},
     pages = {477-480},
     doi = {10.1051/ita:2008013},
     mrnumber = {2434030},
     zbl = {1147.68612},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_2008__42_3_477_0}
}
Chalopin, Jérémie; Ochem, Pascal. Dejean's conjecture and letter frequency. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) pp. 477-480. doi : 10.1051/ita:2008013. http://gdmltest.u-ga.fr/item/ITA_2008__42_3_477_0/

[1] A. Carpi, On Dejeans conjecture over large alphabets. Theoret. Comput. Sci. 385 (2007) 137-151. | MR 2356248 | Zbl 1124.68087

[2] C. Choffrut and J. Karhumäki, Combinatorics of words, in Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa, Springer-Verlag (1997) 329-438. | MR 1469998

[3] M. Mohammad-Noori and J.D. Currie, Dejean's conjecture and Sturmian words. Eur. J. Combin. 28(3) (2007) 876-890. | MR 2300768 | Zbl 1111.68096

[4] F. Dejean, Sur un théorème de Thue. J. Combin. Theor. Ser. A 13 (1972) 90-99. | MR 300959 | Zbl 0245.20052

[5] A. Khalyavin. The minimal density of a letter in an infinite ternary square-free word is 883/3215. J. Integer Sequences 10 (2007) 07.6.5. | MR 2312251 | Zbl 1140.11304

[6] R. Kolpakov, G. Kucherov and Y. Tarannikov, On repetition-free binary words of minimal density. Theoret. Comput. Sci. 218 (1999) 161-175. | MR 1687788 | Zbl 0916.68118

[7] J. Moulin-Ollagnier, Proof of Dejean’s conjecture for alphabets with 5,6,7,8,9,10 and 11 letters. Theoret. Comput. Sci. 95 (1992) 187-205. | MR 1156042 | Zbl 0745.68085

[8] P. Ochem, Letter frequency in infinite repetition-free words. Theoret. Comput. Sci. 380 (2007) 388-392. | MR 2331007 | Zbl 1115.68124

[9] P. Ochem and T. Reix, Upper bound on the number of ternary square-free words, in Workshop on Words and Automata (WOWA'06). St. Petersburg, Russia, June 7 (2006).

[10] J.-J. Pansiot, À propos d'une conjecture de F. Dejean sur les répétitions dans les mots. Discrete Appl. Math. 7 (1984) 297-311. | MR 736893 | Zbl 0536.68072

[11] C. Richard and U. Grimm, On the entropy and letter frequencies of ternary square-free words. Electron. J. Comb. 11 (2004) #R14. | MR 2035308 | Zbl 1104.68090

[12] Y. Tarannikov, The minimal density of a letter in an infinite ternary square-free word is 0.2746... J. Integer Sequences 5 (2002) 02.2.2. | MR 1938221 | Zbl 1121.11303