We prove two cases of a strong version of Dejean’s conjecture involving extremal letter frequencies. The results are that there exist an infinite -free word over a 5 letter alphabet with letter frequency and an infinite -free word over a 6 letter alphabet with letter frequency .
@article{ITA_2008__42_3_477_0, author = {Chalopin, J\'er\'emie and Ochem, Pascal}, title = {Dejean's conjecture and letter frequency}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {42}, year = {2008}, pages = {477-480}, doi = {10.1051/ita:2008013}, mrnumber = {2434030}, zbl = {1147.68612}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2008__42_3_477_0} }
Chalopin, Jérémie; Ochem, Pascal. Dejean's conjecture and letter frequency. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) pp. 477-480. doi : 10.1051/ita:2008013. http://gdmltest.u-ga.fr/item/ITA_2008__42_3_477_0/
[1] On Dejeans conjecture over large alphabets. Theoret. Comput. Sci. 385 (2007) 137-151. | MR 2356248 | Zbl 1124.68087
,[2] Combinatorics of words, in Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa, Springer-Verlag (1997) 329-438. | MR 1469998
and ,[3] Dejean's conjecture and Sturmian words. Eur. J. Combin. 28(3) (2007) 876-890. | MR 2300768 | Zbl 1111.68096
and ,[4] Sur un théorème de Thue. J. Combin. Theor. Ser. A 13 (1972) 90-99. | MR 300959 | Zbl 0245.20052
,[5] The minimal density of a letter in an infinite ternary square-free word is . J. Integer Sequences 10 (2007) 07.6.5. | MR 2312251 | Zbl 1140.11304
.[6] On repetition-free binary words of minimal density. Theoret. Comput. Sci. 218 (1999) 161-175. | MR 1687788 | Zbl 0916.68118
, and ,[7] Proof of Dejean’s conjecture for alphabets with and letters. Theoret. Comput. Sci. 95 (1992) 187-205. | MR 1156042 | Zbl 0745.68085
,[8] Letter frequency in infinite repetition-free words. Theoret. Comput. Sci. 380 (2007) 388-392. | MR 2331007 | Zbl 1115.68124
,[9] Upper bound on the number of ternary square-free words, in Workshop on Words and Automata (WOWA'06). St. Petersburg, Russia, June 7 (2006).
and ,[10] À propos d'une conjecture de F. Dejean sur les répétitions dans les mots. Discrete Appl. Math. 7 (1984) 297-311. | MR 736893 | Zbl 0536.68072
,[11] On the entropy and letter frequencies of ternary square-free words. Electron. J. Comb. 11 (2004) #R14. | MR 2035308 | Zbl 1104.68090
and ,[12] The minimal density of a letter in an infinite ternary square-free word is J. Integer Sequences 5 (2002) 02.2.2. | MR 1938221 | Zbl 1121.11303
,