J. Hromkovic et al. have given an elegant method to convert a regular expression of size into an -free nondeterministic finite automaton having states and transitions. This method has been implemented efficiently in time by C. Hagenah and A. Muscholl. In this paper we extend this method to weighted regular expressions and we show that it can be achieved in time.
@article{ITA_2008__42_2_285_0, author = {Ouardi, Faissal and Ziadi, Djelloul}, title = {Efficient weighted expressions conversion}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {42}, year = {2008}, pages = {285-307}, doi = {10.1051/ita:2007035}, mrnumber = {2401263}, zbl = {1157.68042}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2008__42_2_285_0} }
Ouardi, Faissal; Ziadi, Djelloul. Efficient weighted expressions conversion. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) pp. 285-307. doi : 10.1051/ita:2007035. http://gdmltest.u-ga.fr/item/ITA_2008__42_2_285_0/
[1] Partial derivatives of regular expressions and finite automaton constructions. Theoret. Comput. Sci. 155 (1996) 291-319. | MR 1379579 | Zbl 0872.68120
,[2] Regular expressions into finite automata. Theoret. Comput. Sci. 120 (1993) 197-213. | MR 1247207 | Zbl 0811.68096
,[3] Rational series and their languages. Springer-Verlag, Berlin (1988). | MR 971022 | Zbl 0668.68005
and .[4] Glushkov construction for series: the non commutative case. Int. J. Comput. Math. 80 (2003) 457-472. | MR 1983304 | Zbl 1033.68058
and ,[5] Characterization of Glushkov automata. Theoret. Comput. Sci. 231 (2000) 75-90. | MR 1732178 | Zbl 0952.68084
and ,[6] Computing the equation automaton of regular expression in space and time, in CPM 2001, Combinatorial Pattern Matching, edited by A. Amir and G.M. Landau. Lect. Notes Comput. Sci. 2089 (2001) 157-168. | MR 1904574 | Zbl 0990.68085
and ,[7] From regular weighted expressions to finite automata. Int. J. Fond. Comput. Sci. 15 (2004) 687-700. | MR 2102520 | Zbl 1098.68066
, , and ,[8] The abstract theory of automata. Russian Math. Surveys 16 (1961) 1-53. | MR 138529 | Zbl 0104.35404
,[9] Computing -free NFA from regular expression in time. RAIRO-Theor. Inf. Appl. 34 (2000) 257-277. | Numdam | MR 1809860 | Zbl 0971.68091
and ,[10] Semirings: algebraic theory and applications in computer science. World Scientific, Singapore (1993). | MR 1704233 | Zbl 0934.16046
and ,[11] Translating regular expressions into small -free nondeterministic finite automata. J. Comput. System Sci. 62 (2001) 565-588. | MR 1837505 | Zbl 1014.68093
, and ,[12] Algorithms for computing small NFAs, in Proc 27th MFCS, Warszawa, 2002, edited by K. Diks and W. Rytter. Lect. Notes Comput. Sci. (2002) 328-340. | MR 2064469 | Zbl 1014.68082
and ,[13] Semirings, automata, languages. Springer-Verlag, Berlin (1986). | MR 817983 | Zbl 0582.68002
and ,[14] Derivatives of regular expression with multiplicity, Proc. of MFCS 2002. Lect. Notes Comput. Sci. 2420 (2002) 471-48. | MR 2064481
and ,[15] Regular expressions and state graphs for automata. IEEE T. Electron. Comput. 9 (1960) 39-47. | Zbl 0156.25501
and ,[16] On the definition of a family of automata. Inform. Control 6 (1961) 245-270. | MR 135680 | Zbl 0104.00702
,[17] Algorithmique parallèle et séquentielle des automates. Thesis, LIR report, Université de Rouen (1996).
,[18] Quelques aspects théoriques et algorithmiques des automates. Thesis, Université de Rouen (2002).
,[19] Passage d'une expression rationnelle à un automate fini non-déterministe. Bull. Belg. Math. Soc. Simon Stevin 4 (1997) 177-203. | MR 1440674 | Zbl 0915.68123
, and ,