About the domino problem in the hyperbolic plane from an algorithmic point of view
Margenstern, Maurice
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008), p. 21-36 / Harvested from Numdam

This paper is a contribution to the general tiling problem for the hyperbolic plane. It is an intermediary result between the result obtained by R. Robinson [Invent. Math. 44 (1978) 259-264] and the conjecture that the problem is undecidable.

Publié le : 2008-01-01
DOI : https://doi.org/10.1051/ita:2007045
Classification:  52C20,  05B45
@article{ITA_2008__42_1_21_0,
     author = {Margenstern, Maurice},
     title = {About the domino problem in the hyperbolic plane from an algorithmic point of view},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {42},
     year = {2008},
     pages = {21-36},
     doi = {10.1051/ita:2007045},
     mrnumber = {2382542},
     zbl = {pre05302954},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_2008__42_1_21_0}
}
Margenstern, Maurice. About the domino problem in the hyperbolic plane from an algorithmic point of view. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) pp. 21-36. doi : 10.1051/ita:2007045. http://gdmltest.u-ga.fr/item/ITA_2008__42_1_21_0/

[1] R. Berger, The undecidability of the domino problem. Mem. Amer. Math. Soc. 66 (1966) 1-72. | MR 216954 | Zbl 0199.30802

[2] Ch. Goodman-Strauss, A strongly aperiodic set of tiles in the hyperbolic plane. Invent. Math. 159 (2005) 119-132. | MR 2142334 | Zbl 1064.52012

[3] M. Margenstern, New tools for cellular automata of the hyperbolic plane. J. Univ. Comput. Sci. 6 (2000) 1226-1252. | MR 1817069 | Zbl 0967.68111

[4] M. Margenstern, About the domino problem in the hyperbolic plane from an algorithmic point of view2006), available at: http://www.lita.sciences.univ-metz.fr/~margens/hyp_dominoes.ps.gzip

[5] M. Margenstern, Fibonacci numbers and words in tilings of the hyperbolic plane. TUCS Gen. Publ. 43 (2007) 36-41.

[6] M. Margenstern, About the domino problem in the hyperbolic plane, a new solution, arXiv:cs.CG/0701096 (2007). | MR 2396073

[7] M. Margenstern, The domino problem of the hyperbolic plane is undecidable, arXiv:0706.4161 (2007). | MR 2396073 | Zbl 1152.03036

[8] M. Margenstern, Cellular Automata in Hyperbolic Spaces, Volume 1, Theory. OCP, Philadelphia (2007). | Zbl 1147.68583

[9] R.M. Robinson, Undecidability and nonperiodicity for tilings of the plane. Invent. Math. 12 (1971) 177-209. | MR 297572 | Zbl 0197.46801

[10] R.M. Robinson, Undecidable tiling problems in the hyperbolic plane. Invent. Math. 44 (1978) 259-264. | MR 484409 | Zbl 0359.50011

[11] H. Wang, Proving theorems by pattern recognition. Bell System Tech. J. 40 (1961) 1-41.