This paper is a contribution to the general tiling problem for the hyperbolic plane. It is an intermediary result between the result obtained by R. Robinson [Invent. Math. 44 (1978) 259-264] and the conjecture that the problem is undecidable.
@article{ITA_2008__42_1_21_0, author = {Margenstern, Maurice}, title = {About the domino problem in the hyperbolic plane from an algorithmic point of view}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {42}, year = {2008}, pages = {21-36}, doi = {10.1051/ita:2007045}, mrnumber = {2382542}, zbl = {pre05302954}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2008__42_1_21_0} }
Margenstern, Maurice. About the domino problem in the hyperbolic plane from an algorithmic point of view. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) pp. 21-36. doi : 10.1051/ita:2007045. http://gdmltest.u-ga.fr/item/ITA_2008__42_1_21_0/
[1] The undecidability of the domino problem. Mem. Amer. Math. Soc. 66 (1966) 1-72. | MR 216954 | Zbl 0199.30802
,[2] A strongly aperiodic set of tiles in the hyperbolic plane. Invent. Math. 159 (2005) 119-132. | MR 2142334 | Zbl 1064.52012
,[3] New tools for cellular automata of the hyperbolic plane. J. Univ. Comput. Sci. 6 (2000) 1226-1252. | MR 1817069 | Zbl 0967.68111
,[4] About the domino problem in the hyperbolic plane from an algorithmic point of view2006), available at: http://www.lita.sciences.univ-metz.fr/~margens/hyp_dominoes.ps.gzip
,[5] Fibonacci numbers and words in tilings of the hyperbolic plane. TUCS Gen. Publ. 43 (2007) 36-41.
,[6] About the domino problem in the hyperbolic plane, a new solution, arXiv:cs.CG/0701096 (2007). | MR 2396073
,[7] The domino problem of the hyperbolic plane is undecidable, arXiv:0706.4161 (2007). | MR 2396073 | Zbl 1152.03036
,[8] Cellular Automata in Hyperbolic Spaces, Volume 1, Theory. OCP, Philadelphia (2007). | Zbl 1147.68583
,[9] Undecidability and nonperiodicity for tilings of the plane. Invent. Math. 12 (1971) 177-209. | MR 297572 | Zbl 0197.46801
,[10] Undecidable tiling problems in the hyperbolic plane. Invent. Math. 44 (1978) 259-264. | MR 484409 | Zbl 0359.50011
,[11] Proving theorems by pattern recognition. Bell System Tech. J. 40 (1961) 1-41.
,