In this paper, we study the continuity of rational functions realized by Büchi finite state transducers. It has been shown by Prieur that it can be decided whether such a function is continuous. We prove here that surprisingly, it cannot be decided whether such a function has at least one point of continuity and that its continuity set cannot be computed. In the case of a synchronous rational function, we show that its continuity set is rational and that it can be computed. Furthermore we prove that any rational -subset of for some alphabet is the continuity set of an -rational synchronous function defined on .
@article{ITA_2008__42_1_183_0, author = {Carton, Olivier and Finkel, Olivier and Simonnet, Pierre}, title = {On the continuity set of an Omega rational function}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {42}, year = {2008}, pages = {183-196}, doi = {10.1051/ita:2007050}, mrnumber = {2382551}, zbl = {1149.03028}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2008__42_1_183_0} }
Carton, Olivier; Finkel, Olivier; Simonnet, Pierre. On the continuity set of an Omega rational function. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) pp. 183-196. doi : 10.1051/ita:2007050. http://gdmltest.u-ga.fr/item/ITA_2008__42_1_183_0/
[1] Finite Automata, Behaviour and Synthesis. Nauka, Moscow (1970) (English translation, North Holland, Amsterdam, 1973). | MR 265078 | Zbl 0271.94032
and ,[2] Determinization of transducers over infinite words, in Proceedings of the International Conference ICALP 2000, edited by U. Montanari et al. Lect. Notes Comput. Sci. 1853 (2000) 561-570. | MR 1795917 | Zbl 0973.68113
and ,[3] Squaring transducers: an efficient procedure for deciding functionality and sequentiality. Theor. Comput. Sci. 292 (2003) 45-63. | MR 1964625 | Zbl 1064.68050
, , and ,[4] Transductions and Context Free Languages. Teubner Verlag (1979). | MR 549481 | Zbl 0424.68040
,[5] On a decision method in restricted second order arithmetic, Logic Methodology and Philosophy of Science, Proc. 1960 Int. Congr. Stanford University Press (1962) 1-11. | MR 183636 | Zbl 0147.25103
,[6] Une caractérisation des fonctions séquentielles et des fonctions sous-séquentielles en tant que relations rationnelles. Theor. Comput. Sci. 5 (1977) 325-338. | MR 504457 | Zbl 0376.94022
,[7] Uniformization of rational relations, Jewels are Forever, edited by J. Karhumäki, H. Maurer, G. Paun and G. Rozenberg. Springer (1999) 59-71. | MR 1719021 | Zbl 0944.68107
and ,[8] X-automata on -Words. Theor. Comput. Sci. 110 (1993) 1-51. | MR 1208658 | Zbl 0777.68058
and ,[9] On the topological complexity of infinitary rational relations. RAIRO-Theor. Inf. Appl. 37 (2003) 105-113. | Numdam | MR 2015686 | Zbl 1112.03313
,[10] Undecidability of topological and arithmetical properties of infinitary rational relations. RAIRO-Theor. Inf. Appl. 37 (2003) 115-126. | Numdam | MR 2015687 | Zbl 1112.03312
,[11] On Infinitary rational relations and Borel sets, in Proceedings of the Fourth International Conference on Discrete Mathematics and Theoretical Computer Science DMTCS'03, 7-12 July 2003, Dijon, France. Lect. Notes Comput. Sci. 2731 (2003) 155-167. | MR 2062215 | Zbl 1040.03033
,[12] On the accepting power of 2-Tape Büchi automata, in Proceedings of the 23rd International Symposium on Theoretical Aspects of Computer Science, STACS (2006), Marseille, France. Lect. Notes Comput. Sci. (2006) 3884 301-312. | Zbl 1137.03023
,[13] Borel ranks and Wadge degrees of omega context free languages. Math. Structures Comput. Sci. 16 (2006) 813-840. | MR 2268344 | Zbl 1121.03047
,[14] Synchronized rational relations of finite and infinite words. Theor. Comput. Sci. 108 (1993) 45-82. | MR 1203822 | Zbl 0783.68065
and ,[15] Relations rationnelles infinitaires. PhD thesis, Université Paris 7 (1981).
,[16] Une extension aux mots infinis de la notion de transduction rationnelle, 6th GI Conf. Lect. Notes Comput. Sci. 145 (1983) 123-139. | Zbl 0495.68063
,[17] Relations rationnelles infinitaires. Calcolo XXI (1984) 91-125. | MR 799616 | Zbl 0552.68064
and ,[18] Classical Descriptive Set Theory. Springer-Verlag (1995). | MR 1321597 | Zbl 0819.04002
,[19] Borel sets. J. Symbolic Logic 54 (1989) 915-920. | MR 1011178 | Zbl 0686.03025
, and ,[20] Topology. Academic Press, New York (1966). | MR 217751 | Zbl 0158.40802
,[21] Decision problems for -automata. Math. Syst. Theory 3 (1969) 376-384. | MR 260595 | Zbl 0182.02402
,[22] Logical specifications of infinite computations, in A Decade of Concurrency, edited by J.W. de Bakker et al. Lect. Notes Comput. Sci. 803 (1994) 583-621. | MR 1292687
and ,[23] Algebraische Codierungstheorie - Theorie der Sequentiellen Codierungen. Akademie-Verlag, Berlin (1977). | MR 469495 | Zbl 0363.94016
and ,[24] Descriptive Set Theory. North-Holland, Amsterdam (1980). | MR 561709 | Zbl 0433.03025
,[25] Infinite words, automata, semigroups, logic and games. Pure Appl. Math. 141 (2004). | Zbl 1094.68052
and ,[26] Logic, semigroups and automata on words. Ann. Math. Artif. Intell. 16 (1996) 343-384. | MR 1389853 | Zbl 0860.68071
,[27] Fonctions rationnelles de mots infinis et continuité. PhD thesis, Université Paris 7 (2000).
,[28] How to decide continuity of rational functions on infinite words. Theor. Comput. Sci. 250 (2001) 71-82. | MR 1795237 | Zbl 0952.68076
,[29] Automates et théorie descriptive. PhD thesis, Université Paris 7, (1992). | JFM 48.0679.04
,[30] Hierarchies of recursive -languages. J. Inform. Process. Cybernetics EIK 22 (1986) 219-241. | MR 855527 | Zbl 0627.03024
,[31] -Languages, in Handbook of Formal languages, Volume 3, edited by G. Rozenberg and A. Salomaa. Springer-Verlag, Berlin. | MR 1470017 | Zbl 0866.68057
,[32] Rekursive Folgenmengen I. Z. Math Logik Grundlag. Math. 24 (1978) 523-538. | MR 511706 | Zbl 0421.03035
and ,[33] Automata and quantifier hierarchies, in Formal Properties of Finite automata and Applications, Ramatuelle (1988). Lect. Notes Comput. Sci. 386 (1989) 104-119. | MR 1051954
,[34] Automata on infinite objects, in Handbook of Theoretical Computer Science, Volume B, edited by J. Van Leeuwen. Elsevier, Amsterdam (1990) 133-191. | MR 1127189 | Zbl 0900.68316
,