Learning discrete categorial grammars from structures
Besombes, Jérôme ; Marion, Jean-Yves
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008), p. 165-182 / Harvested from Numdam

We define the class of discrete classical categorial grammars, similar in the spirit to the notion of reversible class of languages introduced by Angluin and Sakakibara. We show that the class of discrete classical categorial grammars is identifiable from positive structured examples. For this, we provide an original algorithm, which runs in quadratic time in the size of the examples. This work extends the previous results of Kanazawa. Indeed, in our work, several types can be associated to a word and the class is still identifiable in polynomial time. We illustrate the relevance of the class of discrete classical categorial grammars with linguistic examples.

Publié le : 2008-01-01
DOI : https://doi.org/10.1051/ita:2007055
Classification:  68Q32,  68T50,  03B47
@article{ITA_2008__42_1_165_0,
     author = {Besombes, J\'er\^ome and Marion, Jean-Yves},
     title = {Learning discrete categorial grammars from structures},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {42},
     year = {2008},
     pages = {165-182},
     doi = {10.1051/ita:2007055},
     mrnumber = {2382550},
     zbl = {1148.68027},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_2008__42_1_165_0}
}
Besombes, Jérôme; Marion, Jean-Yves. Learning discrete categorial grammars from structures. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) pp. 165-182. doi : 10.1051/ita:2007055. http://gdmltest.u-ga.fr/item/ITA_2008__42_1_165_0/

[1] D. Angluin, Inference of reversible languages. J. ACM 29 (1982) 741-765. | MR 666776 | Zbl 0485.68066

[2] Y. Bar-Hillel, C. Gaifman, and E. Shamir, On categorial and phrase structure grammars. Bulletin of Research Council of Israel F(9) (1960) 1-16. | MR 136014 | Zbl 0091.15601

[3] R. Bonato and C. Retoré, Learning rigid lambek grammars and minimalist grammars from structured sentences, in Third Learning Language in Logic Workshop (LLL2001) (2001).

[4] W. Buszkowski and G. Penn, Categorial grammars determined from linguistic data by unification. Studia Logica 49 (1990) 431-454. | MR 1114725 | Zbl 0718.03020

[5] C. Costa Florêncio, Consistent identification in the limit of any of the classes -valued is np-hard, in Logical Aspects of Computational Linguistics, edited by C. Retoré, P. de Groote, G. Morrill. Lect. Notes Comput. Sci. (2001) 125-138. | MR 2058429 | Zbl 0990.68080

[6] D. Dudau-Sofronie, Apprentissage de Grammaires Catégorielles pour simuler l'acquisition du Langage Naturel à l'aide d'informations sémantiques. Ph.D. thesis, Lille I University (2004).

[7] M.E. Gold, Language identification in the limit. Inform. Control 10 (1967) 447-474. | Zbl 0259.68032

[8] M. Kanazawa, Learnable classes of Categorial Grammars. CSLI (1998). | MR 1638140 | Zbl 0937.68130

[9] Yannick Le Nir, Structures des analyses syntaxiques catégorielles. Application à l'inférence grammaticale. Ph.D. thesis, Rennes 1 University (2003).

[10] M. Moortgat, Categorial type logics, in Handbook of Logic and Language. North-Holland, J. van Benthem and A. ter Meulen edition (1996).

[11] M. Moortgat, Structural equations in language learning, in Logical Aspects of Computational Linguistics, edited by C. Retoré, P. de Groote, G. Morrill. Lect. Notes Comput. Sci. 2099 (2001) 1-16. | Zbl 0990.03023

[12] G.V. Morril, Type Logical Grammar: categorial logic of signs. Kluwer (1994). | Zbl 0848.03007

[13] C. Rétoré, The logic of categorial grammars. Technical Report 5703, INRIA (2005). http://www.inria.fr/rrrt/rr-5703.html

[14] Y. Sakakibara, Efficient learning of context free grammars from positive structural examples. Inform. Comput. 97 (1992) 23-60. | MR 1154205 | Zbl 0764.68146

[15] I. Tellier, Modéliser l'acquisition de la syntaxe du langage naturel via l'hypothése de la primauté du sens. Ph.D. thesis, Lille I University (2005).

[16] H.J. Tiede, Lambek calculus proofs and tree automata. Lect. Notes Comput. Sci. 2014 (2001) 251-265. | MR 2050756 | Zbl 0976.03024