Weakly maximal decidable structures
Bès, Alexis ; Cégielski, Patrick
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008), p. 137-145 / Harvested from Numdam

We prove that there exists a structure M whose monadic second order theory is decidable, and such that the first-order theory of every expansion of M by a constant is undecidable.

Publié le : 2008-01-01
DOI : https://doi.org/10.1051/ita:2007044
Classification:  03B25,  03C57,  03D05
@article{ITA_2008__42_1_137_0,
     author = {B\`es, Alexis and C\'egielski, Patrick},
     title = {Weakly maximal decidable structures},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {42},
     year = {2008},
     pages = {137-145},
     doi = {10.1051/ita:2007044},
     mrnumber = {2382548},
     zbl = {1149.03015},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_2008__42_1_137_0}
}
Bès, Alexis; Cégielski, Patrick. Weakly maximal decidable structures. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) pp. 137-145. doi : 10.1051/ita:2007044. http://gdmltest.u-ga.fr/item/ITA_2008__42_1_137_0/

[1] J.R. Büchi, On a decision method in the restricted second-order arithmetic. In Proc. Int. Congress Logic, Methodology and Philosophy of science, Berkeley 1960. Stanford University Press (1962) 1-11. | MR 183636

[2] K.J. Compton, On rich words. In M. Lothaire, editor, Combinatorics on words. Progress and perspectives, Proc. Int. Meet., Waterloo, Canada (1982). Encyclopedia of Mathematics 17, Addison-Wesley (1983) 39-61. | MR 910128 | Zbl 0563.03022

[3] C.C. Elgot and M.O. Rabin. Decidability and undecidability of extensions of second (first) order theory of (generalized) successor. J. Symbolic Logic 31 (1966) 169-181. | Zbl 0144.24501

[4] S. Feferman and R.L. Vaught, The first order properties of products of algebraic systems. Fund. Math. 47 (1959) 57-103. | MR 108455 | Zbl 0088.24803

[5] D. Perrin and J.-É. Pin, Infinite Words. Pure Appl. Math. 141 (2004). | Zbl 1094.68052

[6] V.S. Harizanov, Computably-theoretic complexity of countable structures. Bull. Symbolic Logic 8 (2002) 457-477. | MR 1956865 | Zbl 1039.03027

[7] S. Shelah, The monadic theory of order. Ann. Math. 102 (1975) 379-419. | MR 491120 | Zbl 0345.02034

[8] S. Soprunov, Decidable expansions of structures. Vopr. Kibern. 134 (1988) 175-179 (in Russian). | MR 944294 | Zbl 0665.03004

[9] W. Thomas, The theory of successor with an extra predicate. Math. Ann. 237 (1978) 121-132. | MR 507908 | Zbl 0369.02025

[10] W. Thomas, Ehrenfeucht games, the composition method, and the monadic theory of ordinal words. In Structures in Logic and Computer Science, A Selection of Essays in Honor of A. Ehrenfeucht. Lect. Notes Comput. Sci. 1261 (1997) 118-143. | MR 1638356 | Zbl 0888.03002