sturmian words are infinite words that have exactly factors of length for every positive integer . A sturmian word is also defined as a coding over a two-letter alphabet of the orbit of point under the action of the irrational rotation (mod 1). A substitution fixes a sturmian word if and only if it is invertible. The main object of the present paper is to investigate Rauzy fractals associated with two-letter invertible substitutions. As an application, we give an alternative geometric proof of Yasutomi’s characterization of all pairs such that is a fixed point of some non-trivial substitution.
@article{ITA_2007__41_3_329_0,
author = {Berth\'e, Val\'erie and Ei, Hiromi and Ito, Shunji and Rao, Hui},
title = {On substitution invariant sturmian words : an application of Rauzy fractals},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
volume = {41},
year = {2007},
pages = {329-349},
doi = {10.1051/ita:2007026},
mrnumber = {2354361},
zbl = {1140.11014},
language = {en},
url = {http://dml.mathdoc.fr/item/ITA_2007__41_3_329_0}
}
Berthé, Valérie; Ei, Hiromi; Ito, Shunji; Rao, Hui. On substitution invariant sturmian words : an application of Rauzy fractals. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 41 (2007) pp. 329-349. doi : 10.1051/ita:2007026. http://gdmltest.u-ga.fr/item/ITA_2007__41_3_329_0/
[1] , and, Connectedness of number theoretic tilings. Arch. Math. (Basel) 82 (2004) 153-163. | Zbl 1063.37008
[2] , Une caractérisation simple des nombres de Sturm. J. Théor. Nombres Bordeaux 10 (1998) 237-241. | Numdam | Zbl 0930.11051
[3] , and, Pisot substitutions and Rauzy fractals. Bull. Belg. Math. Soc. Simon Stevin 8 (2001) 181-207. | Zbl 1007.37001
[4] ,, and, Complete characterization of substitution invariant Sturmian sequences. Integers: electronic journal of combinatorial number theory 5 (2005) A14. | MR 2192233 | Zbl 1121.11020
[5] , and, Coincidence for substitutions of Pisot type, Bull. Soc. Math. France 130 (2002) 619-626. | Numdam | Zbl 1028.37008
[6] ,, and, Sturmian Words: description and orbits. Preprint.
[7] , and, A remark on morphic Sturmian words. RAIRO-Theor. Inf. Appl. 28 (1994) 255-263. | Numdam | Zbl 0883.68104
[8] , and, Morphismes de Sturm. Bull. Belg. Math. Soc. Simon Stevin 1 (1994) 175-189. | Zbl 0803.68095
[9] , and, Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences. Discrete Math. 223 (2000) 27-53. | Zbl 0970.68124
[10] ,, and, Initial powers of Sturmian words. Acta Arith. 122 (2006) 315-347. | Zbl 1117.37005
[11] , Descriptions of the characteristic sequence of an irrational. Canad. Math. Bull. 36 (1993) 15-21. | Zbl 0804.11021
[12] , Connectedness of geometric representation of substitutions of Pisot type. Bull. Belg. Math. Soc. Simon Stevin 10 (2003) 77-89. | Zbl 1031.37015
[13] , and, Sequences with minimal block growth. Math. Syst. Theory 7 (1973) 138-153. | Zbl 0256.54028
[14] ,,, and, Substitution invariant cutting sequence. J. Théor. Nombres Bordeaux 5 (1993) 123-137. | Numdam | Zbl 0786.11041
[15] , and, Decomposition theorem on invertible substitutions. Osaka J. Math. 35 (1998) 821-834. | Zbl 0924.20040
[16] , A little more about morphic Sturmian words. RAIRO-Theor. Inf. Appl. 40 (2006), 511-518. | Numdam | Zbl 1110.68118
[17] , Techniques in Fractal Geometry. Oxford University Press, 5th edition (1979).
[18] , and, Purely periodic -expansions with Pisot unit base. Proc. Amer. Math. Soc. 133 (2005) 953-964. | Zbl 1099.11062
[19] , and, Atomic surfaces, tilings and coincidence I. Irreducible case. Israel J. Math. 153 (2006) 129-156. | Zbl pre05256319
[20] , and, On periodic -expansions of Pisot numbers and Rauzy fractals. Osaka J. Math. 38 (2001) 349-368. | Zbl 0991.11040
[21] , and, On continued fractions, substitutions and characteristic sequences . Japan J. Math. 16 (1990) 287-306. | Zbl 0721.11009
[22] , and, Substitution invariant Beatty sequences. Japan J. Math., New Ser. 22 (1996) 349-354. | Zbl 0868.11015
[23] , Algebraic combinatorics on words. Cambridge University Press (2002). | MR 1905123 | Zbl 1001.68093
[24] , and, Morphismes sturmiens et règles de Rauzy. J. Théor. Nombres Bordeaux 5 (1993) 221-233. | Numdam | Zbl 0797.11029
[25] , and, Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940) 1-42. | JFM 66.0188.03
[26] , Propriétés d'invariance des mots sturmiens. J. Théor. Nombres Bordeaux 9 (1997) 351-369. | Numdam | Zbl 0904.11008
[27] , Substitution invariant Sturmian bisequences. J. Théor. Nombres Bordeaux 11 (1999) 201-210. | Numdam | Zbl 0978.11005
[28] , Substitutions in Arithmetics, Dynamics and Combinatorics, V. Berthé, S. Ferenczi, C.Mauduit, A. Siegel Eds., Springer Verlag. Lect. Notes Math. 1794 (2002). | MR 1970385 | Zbl 1014.11015
[29] , Substitution Dynamical Systems. Spectral Analysis, Springer-Verlag. Lect. Notes Math. 1294 (1987). | MR 924156 | Zbl 0642.28013
[30] , Nombres algebriques et substitutions, Bull. Soc. Math. France 110 (1982) 147-178. | Numdam | Zbl 0522.10032
[31] , On the conjugation of standard morphisms. Theoret. Comput. Sci. 195 (1998) 91-109. | Zbl 0981.68104
[32] , and, Geometry of Rauzy fractals. Pacific J. Math. 206 (2002) 465-485. | Zbl 1048.37015
[33] , and, Invertible substitutions and Sturmian sequences. European J. Combinatorics 24 (2003) 983-1002. | Zbl 1040.11014
[34] , and, Local isomorphisms of invertible substitutions. C. R. Acad. Sci. Paris Sér. I 318 (1994) 299-304. | Zbl 0812.11018
[35] , On Sturmian sequences which are invariant under some substitutions, in Number theory and its applications (Kyoto, 1997). Kluwer Acad. Publ., Dordrecht (1999) 347-373. | Zbl 0971.11007