We study some arithmetical and combinatorial properties of -integers for being the larger root of the equation . We determine with the accuracy of 1 the maximal number of -fractional positions, which may arise as a result of addition of two -integers. For the infinite word coding distances between the consecutive -integers, we determine precisely also the balance. The word is the only fixed point of the morphism and . In the case , the corresponding infinite word is sturmian, and, therefore, -balanced. On the simplest non-sturmian example with 2, we illustrate how closely the balance and the arithmetical properties of -integers are related.
@article{ITA_2007__41_3_307_0, author = {Balkov\'a, Lubom\'\i ra and Pelantov\'a, Edita and Turek, Ond\v rej}, title = {Combinatorial and arithmetical properties of infinite words associated with non-simple quadratic Parry numbers}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {41}, year = {2007}, pages = {307-328}, doi = {10.1051/ita:2007025}, mrnumber = {2354360}, zbl = {pre05211862}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2007__41_3_307_0} }
Balková, Lubomíra; Pelantová, Edita; Turek, Ondřej. Combinatorial and arithmetical properties of infinite words associated with non-simple quadratic Parry numbers. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 41 (2007) pp. 307-328. doi : 10.1051/ita:2007025. http://gdmltest.u-ga.fr/item/ITA_2007__41_3_307_0/
[1] Balances for fixed points of primitive substitutions. Theoret. Comput. Sci. 307 (2003) 47-75. | Zbl 1059.68083
,[2] Cubic Pisot units with finite beta expansions, in Algebraic Number Theory and Diophantine Analysis, edited by F. Halter-Koch and R.F. Tichy. De Gruyter, Berlin (2000) 11-26. | Zbl 1001.11038
,[3] Arithmetics on number systems with irrational bases. Bull. Belg. Math. Soc. Simon Stevin 10 (2003) 641-659. | Zbl 1126.11308
, , and ,[4] Palindromic complexity of infinite words associated with simple Parry numbers. Ann. Institut Fourier 56 (2006) 2131-2160. | Numdam | Zbl 1121.68089
, , and ,[5] Addition and multiplication of beta-expansions in generalized Tribonacci base. Discrete Math. Theor. Comput. Sci. 9 (2007) 73-88. | MR 2306521 | Zbl pre05279406
, and ,[6] Computation of for several cubic Pisot numbers. Discrete Math. Theor. Comput. Sci. 9 (2007) 175-194. | MR 2306527 | Zbl pre05279412
,[7] Recent results on extension of sturmian words. Int. J. Algebr. Comput. 12 (2002) 371-385. | Zbl 1007.68141
,[8] Développements en base de Pisot et répartition modulo . C. R. Acad. Sci. Paris 285 (1977) 419-421. | Zbl 0362.10040
,[9] Beta-integers as natural counting systems for quasicrystals. J. Phys. A 31 (1998) 6449-6472. | Zbl 0941.52019
, , and ,[10] Substitutions et -systèmes de numération. Theoret. Comput. Sci. 137 (1995) 219-236. | Zbl 0872.11017
,[11] Finite -expansions. Ergodic Theory Dynam. Systems 12 (1994) 713-723. | Zbl 0814.68065
and ,[12] Complexity of infinite words associated with beta-expansions. RAIRO-Theor. Inf. Appl. 38 (2004) 163-185; Corrigendum, RAIRO-Theor. Inf. Appl. 38 (2004) 269-271. | Numdam | Numdam | Zbl 1104.11013
, and ,[13] Infinite special branches in words associated with beta-expansions. Discrete Math. Theor. Comput. Sci. 9 (2007) 125-144. | MR 2306524 | Zbl 1165.11012 | Zbl pre05279409
, and ,[14] Arithmetics of -expansions, Acta Arithmetica 112 (2004) 23-40. | Zbl 1060.11065
, and ,[15] Linear numeration systems, finite beta-expansions, and discrete spectrum of substitution dynamical systems. Ph.D. Thesis, Washington University, USA (1996)
,[16] On a combinatorial property of sturmian words. Theoret. Comput. Sci. 154 (1996) 387-394. | Zbl 0872.68144
and ,[17] Geometric models for quasicrystals I. Delone sets of finite type. Discrete Comput. Geom. 21 (1999) 161-191. | Zbl 0924.68190
,[18] Généralisation de la multiplication de Fibonacci. Math. Slovaca 50 (2000) 135-148. | Zbl 0984.11009
,[19] Quasicrystals, Diophantine approximation, and algebraic numbers, in Beyond Quasicrystals, edited by F. Axel and D. Gratias. Springer (1995) 3-16. | Zbl 0881.11059
.[20] Symbolic dynamics II. Sturmian trajectories. Amer. J. Math. 62 (1940) 1-42. | JFM 66.0188.03
and ,[21] On the beta-expansions of real numbers. Acta Math. Acad. Sci. Hungar. 11 (1960) 401-416. | Zbl 0099.28103
,[22] Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8 (1957) 477-493. | Zbl 0079.08901
,[23] On periodic expansions of Pisot numbers and Salem numbers. Bull. London Math. Soc. 12 (1980) 269-278. | Zbl 0494.10040
,[24] Metallic phase with long-range orientational order and no translational symmetry. Phys. Rev. Lett. 53 (1984) 1951-1954.
, , and ,[25] Groups, tilings, and finite state automata, Geometry supercomputer project research report GCG1, University of Minnesota, USA (1989).
,[26] Balance properties of the fixed point of the substitution associated to quadratic simple Pisot numbers. RAIRO-Theor. Inf. Appl. 41 (2007) 123-135. | Numdam | Zbl 1146.68410 | Zbl pre05235503
,