The specification of the data structures used in EAT, a software system for symbolic computation in algebraic topology, is based on an operation that defines a link among different specification frameworks like hidden algebras and coalgebras. In this paper, this operation is extended using the notion of institution, giving rise to three institution encodings. These morphisms define a commutative diagram which shows three possible views of the same construction, placing it in an equational algebraic institution, in a hidden institution or in a coalgebraic institution. Moreover, these morphisms can be used to obtain a new description of the final objects of the categories of algebras in these frameworks, which are suitable abstract models for the EAT data structures. Thus, our main contribution is a formalization allowing us to encode a family of data structures by means of a single algebra (which can be described as a coproduct on the image of the institution morphisms). With this aim, new particular definitions of hidden and coalgebraic institutions are presented.
@article{ITA_2007__41_2_191_0, author = {Dom\'\i nguez, C\'esar and Lamb\'an, Laureano and Rubio, Julio}, title = {Object oriented institutions to specify symbolic computation systems}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {41}, year = {2007}, pages = {191-214}, doi = {10.1051/ita:2007015}, mrnumber = {2350644}, zbl = {pre05235508}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2007__41_2_191_0} }
Domínguez, César; Lambán, Laureano; Rubio, Julio. Object oriented institutions to specify symbolic computation systems. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 41 (2007) pp. 191-214. doi : 10.1051/ita:2007015. http://gdmltest.u-ga.fr/item/ITA_2007__41_2_191_0/
[1] Category Theory for Computer Science. Prentice Hall International (1995). | Zbl 0714.18001
and ,[2] Constructor-based observational logic. Technical Report LSV-03-9, Lab. Specification et Verification, ENS de Cachan, Cachan, France (2003).
and ,[3] Hiding and behaviour: an institutional approach, in A Classical Mind: Essays in Honour of C.A.R. Hoare, edited by A. William Roscoe. Prentice-Hall, Englewood Cliffs, NJ (1994) 75-92.
, ,[4] A unified-algebra-based specification language for symbolic computing, in Design and Implementation of Symbolic Computation Systems (DISCO'93), edited by A. Miola, Springer, Berlin. Lect. Notes Comput. Sci. 722 (1993) 122-133.
and ,[5] Unified domains and abstract computational structures, in Artificial Intelligence and Symbolic Mathematical Computation (AISMC'92), edited by J. Calmet and J.A. Campbell, Springer, Berlin. Lect. Notes Comput. Sci. 737 (1993) 166-177. | MR 1291204 | Zbl 0925.68246
, and ,[6] Coalgebra semantics for hidden algebra: parameterised objects and inheritance, in Recent Trends in Algebraic Development Techniques, edited by F. Parisi-Presicce, Springer, Berlin. Lect. Notes Comput. Sci. 1376 (1998) 174-189. | MR 1656750 | Zbl 0906.68094
,[7] A coalgebraic equational approach to specifying observational structures. Theoret. Comput. Sci. 280 (2002) 35-68. | MR 1904980 | Zbl 1002.68095
,[8] A completeness result for equational deduction in coalgebraic specification, in Recent Trends in Algebraic Development Techniques, edited by F. Parisi-Presicce, Springer, Berlin. Lect. Notes Comput. Sci. 1376 (1998) 190-205. | MR 1656751 | Zbl 0903.08007
,[9] Modeling inheritance as coercion in a symbolic computation system, in International Symposium on Symbolic and Algebraic Computation (ISSAC'2001), edited by B. Mourrain, ACM Press (2001) 107-115. | Zbl 1356.68276
, ,[10] Hidden specification of a functional system, in Computer Aided Systems Theory (EUROCAST'2001), edited by R. Moreno-Díaz, B. Buchberger, J.L. Freire, Springer, Berlin. Lect. Notes Comput. Sci. 2178 (2001) 555-569. | Zbl 1023.68129
, , and ,[11] The Kenzo program, Institut Fourier, Grenoble, (1999), Available at http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo
, and ,[12] Diagrammatic Specifications. Math. Structures Comput. Sci. 13 (2003) 857-890. | Zbl 1089.68063
,[13] Institutions: Abstract model theory for specification and programming. J. ACM 39 (1992) 95-146. | Zbl 0799.68134
and ,[14] Towards an algebraic semantics for the object paradigm, in Recent Trends in Data Type Specification, edited by H. Ehrig and F. Orejas Springer, Berlin. Lect. Notes Comput. Sci. 785 (1994) 1-29. | Zbl 0941.68637
and ,[15] A hidden agenda. Theoret. Comput. Sci. 245 (2000) 55-101. | Zbl 0946.68070
and ,[16] Hiding more of hidden algebra, in Formal Methods (FM'99), edited by J.M. Wing, J. Woodcook, J. Davies, Springer, Berlin. Lect. Notes Comput. Sci. 1709, (1999) 1704-1719. | Zbl 0953.68094
, ,[17] Institution morphisms. Form. Asp. Comput. 13 (2002) 274-307. | Zbl 1001.68019
and ,[18] A hidden herbrand theorem: combining the object and logic paradigms. J. Log. Algebr. Program. 51 (2002) 1-41. | Zbl 1012.03041
, and ,[19] Observational logic, in Algebraic Methodology and Software Technology (AMAST'98), edited by A.M. Haeberer, Springer, Berlin. Lect. Notes Comput. Sci. 1584 (1999) 263-277.
and ,[20] On institutions for modular coalgebraic specifications. Theoret. Comput. Sci. 280 (2002) 69-103. | Zbl 1052.68089
and ,[21] Specifying implementations, in International Symposium on Symbolic and Algebraic Computation (ISSAC'99), edited by S. Dooley. ACM Press, (1999) 245-251.
, and ,[22] An object-oriented interpretation of the EAT system, Applicable Algebra in Engineering, Comm. Comput. 14 (2003) 187-215. | Zbl 1046.68140
, and ,[23] Specification of Abstract Data Types. Wiley and Teubner, New York (1996). | MR 1440856 | Zbl 0868.68077
, and ,[24] Constructive algebraic topology. Bull. Sci. Math. 126 (2002) 389-412. | Zbl 1007.55019
, ,[25] EAT: Symbolic Software for Effective Homology Computation, Institut Fourier, Grenoble, 1997. Available at ftp://fourier.ujf-grenoble.fr/pub/EAT
, and ,[26] Overview of EAT, a System for Effective Homology Computation. The SAC Newsletter 3 (1998) 69-79.
, and ,[27] Universal coalgebra: a theory of systems, Theoret. Comput. Sci. 249 (2000) 3-80. | Zbl 0951.68038
,[28] Towards heterogeneous specifications, in Frontiers of Combinig Systems (FroCos'98), Research Studies Press/Wiley, edited by D.M. Gabbay, M. de Rijke. Stud. Logic Comput. 7 (2000) 337-360. | Zbl 0988.03056
,