For polyominoes coded by their boundary word, we describe a quadratic algorithm in the boundary length which improves the naive algorithm. Techniques used emanate from algorithmics, discrete geometry and combinatorics on words.
@article{ITA_2007__41_2_147_0, author = {Gambini, Ian and Vuillon, Laurent}, title = {An algorithm for deciding if a polyomino tiles the plane}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {41}, year = {2007}, pages = {147-155}, doi = {10.1051/ita:2007012}, mrnumber = {2350641}, zbl = {pre05235505}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2007__41_2_147_0} }
Gambini, Ian; Vuillon, Laurent. An algorithm for deciding if a polyomino tiles the plane. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 41 (2007) pp. 147-155. doi : 10.1051/ita:2007012. http://gdmltest.u-ga.fr/item/ITA_2007__41_2_147_0/
[1] ECO: a methodology for the Enumeration of Combinatorial Objects. J. Difference Equ. Appl. 5 (1999) 435-490. | Zbl 0944.05005
, , and ,[2] On translating one polyomino to tile the plane. Discrete Comput. Geom. 6 (1991) 575-592. | Zbl 0754.05030
and ,[3] A method for the enumeration of various classes of column-convex polygons. Discrete Math. 154 (1996) 1-25. | Zbl 0858.05006
,[4] Habilitation. LABRI Université de Bordeaux 1 (1996). | MR 1395445
.[5] Rigorous results for the number of convex polygons on the square and honeycomb lattices. J. Phys. A 21 (1988) 2635-2642.
and .[6] Introduction to algorithms. Chapt. 34, MIT Press (1990) 853-885. | Zbl 1047.68161
, and ,[7] Salient and Reentrant Points of Discrete Sets, in Proc. of the nineth International Workshop on Combinatorial Image Analysis (IWCIA 2003), volume 12 of Electronic Notes in Discrete Mathematics. Elsevier (2003). | MR 2155847 | Zbl 1115.52300
and .[8] Enumeration of convex polyominoes using the ECO method, in Discrete Models for Complex Systems, DMCS'03, edited by M. Morvan and É. Rémila, Discrete Mathematics and Theoretical Computer Science Proceedings AB, 103-116. | Zbl 1032.05003
, , and ,[9] Algebraic languages and polyominoes enumeration. Theoret. Comput. Sci. 34 (1984) 169-206. | Zbl 0985.68516
and ,[10] A Method for Cutting Squares Into Distinct Squares. Discrete Appl. Math. 98 (1999) 65-80. | Zbl 0935.05024
,[11] Polyominoes, Princeton science library (1994). | Zbl 0831.05020
.[12] Complexity of cutting words on regular tilings. Eur. J. Combin. 28 (2007) 429-438. | Zbl 1111.68095
and .[13] Fast pattern matching in strings. SIAM J. Comput. 6 (1997) 323-350. | Zbl 0372.68005
, and .[14] Enumeration of symmetry classes of convex polyminoes in the square lattice. Adv. Appl. Math. 21 (1998) 343-380. | Zbl 0921.05024
, and ,[15] Enumeration of symmetry classes of parallelogram polyminoes. Ann. Sci. Math. Québec 25 (2001) 53-72. | Zbl 1002.05015
and ,