A real number is called if its binary expansion corresponds to a -set of natural numbers. Such reals are just the limits of computable sequences of rational numbers and hence also called computably approximable. Depending on how fast the sequences converge, -reals have different levels of effectiveness. This leads to various hierarchies of reals. In this survey paper we summarize several recent developments related to such kind of hierarchies shown by the author and his collaborators.
@article{ITA_2007__41_1_3_0, author = {Zheng, Xizhong}, title = {On the hierarchies of $\Delta ^0\_2$-real numbers}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {41}, year = {2007}, pages = {3-25}, doi = {10.1051/ita:2007008}, mrnumber = {2330040}, zbl = {pre05238551}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2007__41_1_3_0} }
Zheng, Xizhong. On the hierarchies of $\Delta ^0_2$-real numbers. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 41 (2007) pp. 3-25. doi : 10.1051/ita:2007008. http://gdmltest.u-ga.fr/item/ITA_2007__41_1_3_0/
[1] Weakly computable real numbers. J. Complexity 16 (2000) 676-690. | Zbl 0974.03054
, and ,[2] Recursively enumerable reals and Chaitin numbers. Theor. Comput. Sci. 255 (2001) 125-149. | Zbl 0974.68072
, , and ,[3] Degrees of d.c.e. reals. Math. Logic Quart. 50 (2004) 345-350. | Zbl 1059.03075
, and ,[4] Some computability-theoretic aspects of reals and randomness, in The Notre Dame lectures, Assoc. Symbol. Logic, Urbana, IL. Lect. Notes Log. 18 (2005) 97-147. | Zbl 1075.03020
,[5] The degree of unsolvability of a real number, in Proceedings of CCA 2000, Swansea, UK, September 2000, edited by J. Blanck, V. Brattka and P. Hertling. Lect. Notes Comput. Sci. 2064 (2001) 16-29. | Zbl 0985.03027
and ,[6] Recursive real numbers. Proc. Amer. Math. Soc. 5 (1954) 784-791. | Zbl 0058.00602
,[7] Relatively recursive reals and real functions. Theor. Comput. Sci. 210 (1999) 99-120. | Zbl 0912.68034
,[8] Complexity Theory of Real Functions. Progress in Theoretical Computer Science. Birkhäuser, Boston, MA (1991). | MR 1137517 | Zbl 0791.03019
,[9] A certain hierarchy of sets. i, ii, iii. (Russian). Algebra i Logika 7 (1968) 47-73; 7 (1968) 15-47; 9 (1970) 34-51. | Zbl 0233.02017
,[10] Criteria of constructibility for real numbers. J. Symbolic Logic 18 (1953) 7-10. | MR 54549 | Zbl 0052.25101
,[11] Thesis. National University of Singapore. (In preparation).
, .[12] Classical recursion theory, Studies in Logic and the Foundations of Mathematics 125. North-Holland Publishing Co., Amsterdam (1989). | MR 982269 | Zbl 0661.03029
,[13] Classical recursion theory. Vol. II, Studies in Logic and the Foundations of Mathematics 143. North-Holland Publishing Co., Amsterdam (1999). | MR 1718169 | Zbl 0931.03057
,[14] D.c.e. reals, relative randomness, and real closed fields, in CCA 2004, August 16-20, 2004, Lutherstadt Wittenberg, Germany (2004).
,[15] On the hierarchy and extension of monotonically computable real numbers. J. Complexity 19 (2003) 672-691. | MR 2003239 | Zbl 1043.03037
and ,[16] Solovay reducibility on d-c.e. real numbers, in COCOON 2005, August 16-19, 2005, Kunming, China. Lect. Notes Comput. Sci. (2005) 359-368. | MR 2190859 | Zbl 1128.03307
and ,[17] Weakly computable real numbers and total computable real functions, in Proceedings of COCOON 2001, Guilin, China, August 20-23, 2001. Lect. Notes Comput. Sci. 2108 (2001) 586-595. | Zbl 0991.03520
, , and ,[18] Review of “Peter, R., Rekursive Funktionen”. J. Symbolic Logic 16 (1951) 280-282.
,[19] Computability and recursion. Bull. Symbolic Logic 2 (1996) 284-321. | Zbl 0861.03031
,[20] Cohesive sets and recursively enumerable Dedekind cuts. Pacific J. Math. 31 (1969) 215-231. | Zbl 0172.00902
,[21] Recursion theory and Dedekind cuts. Trans. Amer. Math. Soc. 140 (1969) 271-294. | Zbl 0181.30503
,[22] Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, in Perspectives in Mathematical Logic. Springer-Verlag, Berlin (1987). | MR 882921 | Zbl 0623.03042 | Zbl 0667.03030
,[23] Draft of a paper (or a series of papers) on chaitin's work .... manuscript, IBM Thomas J. Watson Research Center, Yorktown Heights, NY (1975) 215.
,[24] Nicht konstruktiv beweisbare Sätze der Analysis. J. Symbolic Logic 14 (1949) 145-158. | Zbl 0033.34102
,[25] On computable numbers, with an application to the “Entscheidungsproblem”. Proceedings of the London Mathematical Society 42 (1936) 230-265. | JFM 62.1059.03 | Zbl 0016.09701
,[26] On computable numbers, with an application to the “Entscheidungsproblem”. A correction, in proceedings of the London Mathematical Society 43 (1937) 544-546. | JFM 63.0823.02 | Zbl 0018.19304
,[27] A finite hierarchy of the recursively enumerable real numbers, in Proceedings of MFCS'98, Brno, Czech Republic, August, 1998. Lect. Notes Comput. Sci. 1450 (1998) 798-806. | Zbl 0920.03054
and ,[28] Regular reals, in Proceedings of CCA 2003, Cincinnati, USA, edited by V. Brattka, M. Schröder, K. Weihrauch and N. Zhong, volume 302 - 8/2003 of Informatik Berichte, FernUniversität Hagen (2003) 363-374.
,[29] Recursive approximability of real numbers. Mathematical Logic Quarterly 48 (2002) 131-156. | Zbl 1017.03039
,[30] On the divergence bounded computable real numbers, in Computing and Combinatorics, edited by T. Warnow and B. Zhu. Lect. Notes Comput. Sci. 2697 102-111, Berlin (2003). Springer. COOCON 2003, July 25-28, 2003, Big Sky, MT, USA. | Zbl 1276.03036
,[31] On the Turing degrees of weakly computable real numbers. J. Logic Computation 13 (2003) 159-172. | Zbl 1054.03040
,[32] A note on the Turing degree of divergence bounded computable real numbers, in CCA 2004, August 16-20, Lutherstadt Wittenberg, Germany (2004). | Zbl 1111.03039
and ,[33] On the extensions of solovay reducibility, in COOCON 2004, August 17-20, Jeju Island, Korea. Lect. Notes Comput. Sci. 3106 (2004). | Zbl 1091.03013
and ,[34] Weak computability and representation of reals. Mathematical Logic Quarterly 50 (4/5) (2004) 431-442. | Zbl 1059.03077
and ,[35] Effective jordan decomposition. Theor. Comput. Syst. 38 (2005) 189-209. | Zbl 1071.03028
, and ,[36] -monotonically computable real numbers. Mathematical Logic Quarterly 51 (2005) 1-14. | Zbl 1066.03060
, and ,