This note is about functions whose graph is recognized by a Büchi finite automaton on the product alphabet . These functions are Baire class 2 in the Baire hierarchy of Borel functions and it is decidable whether such function are continuous or not. In 1920 W. Sierpinski showed that a function is Baire class 1 if and only if both the overgraph and the undergraph of are . We show that such characterization is also true for functions on infinite words if we replace the real ordering by the lexicographical ordering on . From this we deduce that it is decidable whether such function are of Baire class 1 or not. We extend this result to real functions definable by automata in Pisot base.
@article{ITA_2007__41_1_27_0,
author = {Cagnard, Benoit and Simonnet, Pierre},
title = {Automata, Borel functions and real numbers in Pisot base},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
volume = {41},
year = {2007},
pages = {27-44},
doi = {10.1051/ita:2007007},
mrnumber = {2330041},
zbl = {pre05238552},
zbl = {1156.03036},
language = {en},
url = {http://dml.mathdoc.fr/item/ITA_2007__41_1_27_0}
}
Cagnard, Benoit; Simonnet, Pierre. Automata, Borel functions and real numbers in Pisot base. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 41 (2007) pp. 27-44. doi : 10.1051/ita:2007007. http://gdmltest.u-ga.fr/item/ITA_2007__41_1_27_0/
[1] , Signed-digit number representation for fast parallel aritmetic. IRE Trans. Electronic Comput. 10 (1961) 389-400.
[2] , On a decision method in restricted second order arithmetic, in Methodology and Philosophy of Science. Stanford Univ. Press, Calif. (1962) 1-11.
[3] , and, Decision issues on functions realized by finite automata. J. Automata Languages Combin. 4 (1999) 171-182. | Zbl 0943.68106
[4] , Classics On Fractals. Studies in non linearity. Westview Press (2004). | Zbl 1062.28007
[5] , Automata, Languages and Machines, Vol. A. Academic Press, New York London (1974). | MR 530382 | Zbl 0317.94045
[6] and, On-the-fly convertion of redundant into conventional representations. IEEE Trans. Comput. 36 (1987) 895-897.
[7] , On the topological complexity of infinitary rational relations. Theor. Inform. Appl. 37 (2003) 105-113. | Numdam | Zbl 1112.03313
[8] , Undecidability of topological and arithmetical properties of infinitary rational relations. Theor. Inform. Appl. 37 (2003) 115-126. | Numdam | Zbl 1112.03312
[9] , Topologie, Analyse. Vuibert (1976).
[10] and J . Sakarovitch, Synchronized relations of finite and infinite words. Theoret. Comput. Sci. (1993) 45-82. | Zbl 0783.68065
[11] and, On representation of integers in linear numeration systems1996) 345-368. | Zbl 0856.11007
[12] , On-the-fly algorithms and sequential machines. IEEE Trans. Comput. 49 (2000) 859-863.
[13] , Numeration Systems. Chapter 7 of M. Lothaire, Algebraic Combinatorics on Words. Cambridge University Press (2002).
[14] , Two decidability problems for infinite words. Inform. Proc. Lett. 22 (1986) 135-140. | Zbl 0587.68072
[15] , Classical Descriptive Set Theory. Springer-Verlag (1995). | MR 1321597 | Zbl 0819.04002
[16] , Digit-set convertions: Generalizations and applications. IEEE Trans. Comput. 43 (1994) 622-629.
[17] , Decision problem for -automata. Math. Systems. Theory 3 (1969) 376-384. | Zbl 0182.02402
[18] and, Ludwig Scheeffer et les extensions du Théorème des Accroissements Finis, in Séminaire du Luxembourg, Travaux mathématiques, fascicule XIII (2002) 1-60. | Zbl 1101.01009
[19] , Arithmétique des ordinateurs. Masson, Paris (1989).
[20] and, Infinite words, Automata, Semigroups, Logic and Games. Pure Appl. Mathematics Series 141, Academic Press, Elsevier (2004). | Zbl 1094.68052
[21] , How to decide continuity of rationnal functions on infinite words. Theoret. Comput. Sci. 250 (2001) 71-82. | Zbl 0952.68076
[22] , How to decide continuity of rationnal functions on infinite words (Errata). Theoret. Comput. Sci. 276 (2002) 445-447. | Zbl 1052.68080
[23] , Fonctions boréliennes sur un quotient. Bull. Soc. Math. France 100 (1976) 141-147. | Zbl 0336.54015
[24] , Éléments de théorie des automates. Vuibert informatique (2003). | Zbl 1178.68002
[25] , Sur les fonctions de première classe. C. R. Acad. Sci. Paris 170 (1920) 919-922. | JFM 47.0236.02