Numerical integration is an important operation for scientific computations. Although the different quadrature methods have been well studied from a mathematical point of view, the analysis of the actual error when performing the quadrature on a computer is often neglected. This step is however required for certified arithmetics. We study the Newton-Cotes quadrature scheme in the context of multiple-precision arithmetic and give enough details on the algorithms and the error bounds to enable software developers to write a Newton-Cotes quadrature with bounded error.
@article{ITA_2007__41_1_103_0, author = {Fousse, Laurent}, title = {Multiple-precision correctly rounded Newton-Cotes quadrature}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {41}, year = {2007}, pages = {103-121}, doi = {10.1051/ita:2007004}, mrnumber = {2330046}, zbl = {1136.65032}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2007__41_1_103_0} }
Fousse, Laurent. Multiple-precision correctly rounded Newton-Cotes quadrature. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 41 (2007) pp. 103-121. doi : 10.1051/ita:2007004. http://gdmltest.u-ga.fr/item/ITA_2007__41_1_103_0/
[1] A comparison of three high-precision quadrature schemes, in Proceedings of the RNC'5 conference (Real Numbers and Computers) (September 2003) 81-95. http://www.ens-lyon.fr/LIP/Arenaire/RNC5.
and ,[2] User's Guide to PARI/GP (2000). ftp://megrez.math.u-bordeaux.fr/pub/pari/manuals/users.pdf.
, , , and ,[3] Methods of numerical integration. Academic Press, New York, 2nd edition (1984). | MR 760629 | Zbl 0537.65020
and ,[4] Accurate floating point summation. http://www.cs.berkeley.edu/ demmel/AccurateSummation.ps (May 2002).
and ,[5] Les nombres premiers. Actualités Scientifiques et Industrielles 1366 (1975). | MR 417077 | Zbl 0313.10001
and ,[6] F. Jezequel and M. Charikhi, Dynamical control of computations of multiple integrals. SCAN2002 conference, Paris (France) (23-27 September 2002).
[7] MuPAD User's Manual. Wiley Ltd. (1996).
, , , , , , , , , , , and ,[8] Numerical computations in MuPAD 1.4. mathPAD 8 (1998) 58-67.
,[9] The Spaces project. The MPFR library, version 2.0.1. http://www.mpfr.org/ (2002).