In this note we consider the longest word, which has periods , and does not have the period . The length of such a word can be established by a simple algorithm. We give a short and natural way to prove that the algorithm is correct. We also give a new proof that the maximal word is a palindrome.
@article{ITA_2006__40_4_583_0, author = {Holub, \v St\v ep\'an}, title = {On multiperiodic words}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {40}, year = {2006}, pages = {583-591}, doi = {10.1051/ita:2006042}, mrnumber = {2277051}, zbl = {1110.68121}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2006__40_4_583_0} }
Holub, Štěpán. On multiperiodic words. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006) pp. 583-591. doi : 10.1051/ita:2006042. http://gdmltest.u-ga.fr/item/ITA_2006__40_4_583_0/
[1] Fine and Wilf's theorem for three periods and a generalization of sturmian words. Theoret. Comput. Sci. 218 (1999) 83-94. | Zbl 0916.68114
, and ,[2] Generalised Fine and Wilf's theorem for arbitrary number of periods. Theoret. Comput. Sci. 339 (2005) 49-60. | Zbl 1127.68074
and ,[3] Uniqueness theorems for periodic functions. Proc. Amer. Math. Soc. 16 (1965) 109-114. | Zbl 0131.30203
and ,[4] A solution of the equation , in Contributions to general algebra, 11 (Olomouc/Velké Karlovice, 1998), Heyn, Klagenfurt (1999) 105-111. | Zbl 0941.20066
,[5] On a paper by Castelli, Mignosi, Restivo. Theoret. Inform. Appl. 34 (2000) 373-377. | Numdam | Zbl 0987.68056
,[6] Équations dans les monoïdes libres. Mathématiques et Sciences de l'Homme, No. 16, Mouton, (1972). | Zbl 0258.20058
,[7] Fine and Wilf words for any periods. Indag. Math. (N.S.) 14 (2003) 135-147. | Zbl 1091.68088
and ,