Transcendence of numbers with an expansion in a subclass of complexity 2n + 1
Kärki, Tomi
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006), p. 459-471 / Harvested from Numdam

We divide infinite sequences of subword complexity 2n+1 into four subclasses with respect to left and right special elements and examine the structure of the subclasses with the help of Rauzy graphs. Let k2 be an integer. If the expansion in base k of a number is an Arnoux-Rauzy word, then it belongs to Subclass I and the number is known to be transcendental. We prove the transcendence of numbers with expansions in the subclasses II and III.

Publié le : 2006-01-01
DOI : https://doi.org/10.1051/ita:2006034
Classification:  11J81,  68R15
@article{ITA_2006__40_3_459_0,
     author = {K\"arki, Tomi},
     title = {Transcendence of numbers with an expansion in a subclass of complexity 2n + 1},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {40},
     year = {2006},
     pages = {459-471},
     doi = {10.1051/ita:2006034},
     mrnumber = {2269204},
     zbl = {pre05123525},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_2006__40_3_459_0}
}
Kärki, Tomi. Transcendence of numbers with an expansion in a subclass of complexity 2n + 1. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006) pp. 459-471. doi : 10.1051/ita:2006034. http://gdmltest.u-ga.fr/item/ITA_2006__40_3_459_0/

[1] B. Adamczewski, Y. Bugeaud and F. Luca, Sur la complexité des nombres algébriques. C. R. Acad. Sci. Paris, Ser. I 339 (2004) 11-14. | Zbl 1119.11019

[2] B. Adamczewski and J. Cassaigne, On the transcendence of real numbers with a regular expansion. J. Number Theory 103 (2003) 27-37. | Zbl 1052.11052

[3] J.-P. Allouche, Nouveaux résultats de transcendence de réels à développements non aléatoire. Gazette des Mathématiciens 84 (2000) 19-34.

[4] J.-P. Allouche and L.Q. Zamboni, Algebraic irrational binary numbers cannot be fixed points of non-trivial constant length or primitive morphisms. J. Number Theory 69 (1998) 119-124. | Zbl 0918.11016

[5] P. Arnoux and G. Rauzy, Représentation géométrique de suites de complexité 2n+1. Bull. Soc. Math. France 119 (1991) 199-215. | Numdam | Zbl 0789.28011

[6] S. Ferenczi and C. Mauduit, Transcendence of numbers with a low complexity expansion. J. Number Theory 67 (1997) 146-161. | Zbl 0895.11029

[7] G.A. Hedlund and M. Morse, Symbolic dynamics II: Sturmian trajectories. Amer. J. Math. 62 (1940) 1-42. | JFM 66.0188.03

[8] D. Ridout, Rational approximations to algebraic numbers. Mathematika 4 (1957) 125-131. | Zbl 0079.27401

[9] R.N. Risley and L.Q. Zamboni, A generalization of Sturmian sequences: combinatorial structure and transcendence. Acta Arith. 95 (2000), 167-184. | Zbl 0953.11007