A survey on transitivity in discrete time dynamical systems. Application to symbolic systems and related languages
Cattaneo, Gianpiero ; Dennunzio, Alberto ; Farina, Fabio
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006), p. 333-352 / Harvested from Numdam

The main goal of this paper is the investigation of a relevant property which appears in the various definition of deterministic topological chaos for discrete time dynamical system: transitivity. Starting from the standard Devaney's notion of topological chaos based on regularity, transitivity, and sensitivity to the initial conditions, the critique formulated by Knudsen is taken into account in order to exclude periodic chaos from this definition. Transitivity (or some stronger versions of it) turns out to be the relevant condition of chaos and its role is discussed by a survey of some important results about it with the presentation of some new results. In particular, we study topological mixing, strong transitivity, and full transitivity. Their applications to symbolic dynamics are investigated with respect to the relationships with the associated languages.

Publié le : 2006-01-01
DOI : https://doi.org/10.1051/ita:2006016
Classification:  37B05,  37B10
@article{ITA_2006__40_2_333_0,
     author = {Cattaneo, Gianpiero and Dennunzio, Alberto and Farina, Fabio},
     title = {A survey on transitivity in discrete time dynamical systems. Application to symbolic systems and related languages},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {40},
     year = {2006},
     pages = {333-352},
     doi = {10.1051/ita:2006016},
     mrnumber = {2252643},
     zbl = {1112.37005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_2006__40_2_333_0}
}
Cattaneo, Gianpiero; Dennunzio, Alberto; Farina, Fabio. A survey on transitivity in discrete time dynamical systems. Application to symbolic systems and related languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 40 (2006) pp. 333-352. doi : 10.1051/ita:2006016. http://gdmltest.u-ga.fr/item/ITA_2006__40_2_333_0/

[1] E. Akin, The general topology of dynamical systems. Graduate Stud. Math. 1, American Mathematical Society, Providence (1993). | MR 1219737 | Zbl 0781.54025

[2] E. Akin and S. Kolyada, Li-Yorke sensitivity. Nonlinearity 16 (2003) 1421-1433. | MR 1986303 | Zbl 1045.37004

[3] L.L. Alseda, S. Kolyada, J. Llibre and L. Snoha, Entropy and periodic points for transitive maps. Trans. Amer. Math. Soc. 351 (1999) 1551-1573. | MR 1451592 | Zbl 0913.58034

[4] L.L. Alseda, M.A. Del Rio and J.A. Rodriguez, A survey on the relation between transitivity and dense periodicity for graph maps. J. Diff. Equ. Appl. 9 (2003) 281-288. | MR 1990336 | Zbl 1026.37031

[5] J. Banks, J. Brooks, G. Cairns, G. Davis and P. Stacey, On Devaney's definition of chaos. Amer. Math. Montly 99 (1992) 332-334. | MR 1157223 | Zbl 0758.58019

[6] F. Blanchard and G. Hansel, Languages and subshifts, Automata on Infinite Words (Berlin), edited by M. Nivat and D. Perrin. Lect. Notes Comput. Sci. 192 (1985) 138-146. | MR 814739 | Zbl 0571.68059

[7] F. Blanchard, P. Kurka and A. Maas, Topological and measure-theoretic properties of one-dimensional cellular automata. Physica D 103 (1997) 86-99. | MR 1464242 | Zbl 1194.37002

[8] F. Blanchard and P. Tisseur, Some properties of cellular automata with equicontinuity points, Ann. Inst. Henri Poincaré. Probab. Statist. 36 (2000) 569-582. | Numdam | MR 1792656 | Zbl 0964.37011

[9] M. Boyle and B. Kitchens, Periodic points for cellular automata. Indag. Math. 10 (1999) 483-493. | MR 1820545 | Zbl 1024.37007

[10] G. Cattaneo and A. Dennunzio, Subshift behavior of cellular automata. topological properties and related languages, Machines, Computations, and Universality, in 4th International Conference, MCU 2004 (Berlin). Lect. Notes Comput. Sci. 3354 (2005) 140-152. | Zbl 1119.68119

[11] G. Cattaneo, A. Dennunzio and L. Margara, Chaotic subshifts and related languages applications to one-dimensional cellular automata. Fundamenta Informaticae 52 (2002) 39-80. | Zbl 1011.68054

[12] G. Cattaneo, A. Dennunzio and L. Margara, Solution of some conjectures about topological properties of linear cellular automata. Theoret. Comput. Sci. 325 (2004) 249-271. | Zbl 1071.68066

[13] G. Cattaneo, E. Formenti and L. Margara, Topological definitions of deterministic chaos, applications to cellular automata dynamics, in Cellular Automata, a Parallel Model, edited by M. Delorme and J. Mazoyer. Kluwer Academic Pub., Dordrecht. Math. Appl. 460 (1999) 213-259.

[14] B. Codenotti and L. Margara, Transitive cellular automata are sensitive. Amer. Math. Monthly 103 (1996) 58-62. | Zbl 0853.68137

[15] A. Crannell, The role of transitivity in Devaney's definition of chaos. Amer. Math. Monthly 102 (1995) 768-793. | Zbl 0849.58046

[16] M. Denker, C. Grillenberger and K. Sigmund, Ergodic theory on compact spaces. Lect. Notes Math. 527 (1976). | MR 457675 | Zbl 0328.28008

[17] R.L. Devaney, An introduction to chaotic dynamical systems. Second ed., Addison-Wesley (1989). | MR 1046376 | Zbl 0695.58002

[18] J.-P. Eckmann and D. Ruelle, Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57 (1985) 617-656. | Zbl 0989.37516

[19] E. Glasner and B. Weiss, Sensitive dependence on initial condition. Nonlinearity 6 (1993) 1067-1075. | Zbl 0790.58025

[20] A. Kameyama, Topological transitivity and strong transitivity. Acta Math. Univ. Comenianae LXXI, 139. | MR 1980375 | Zbl 1048.37037

[21] V. Kannan and A. Nagar, Topological transitivity for discrete dynamical systems, in Applicable Mathematics in Golden Age, edited by J.C. Misra. Narosa Pub. (2002).

[22] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems. Cambridge University Press (1995). | MR 1326374 | Zbl 0878.58020

[23] J.L. Kelley, General topology. Springer-Verlag (1975). | MR 370454 | Zbl 0306.54002

[24] C. Knudsen, Chaos without nonperiodicity. Amer. Math. Monthly 101 (1994) 563-565. | Zbl 0840.54031

[25] S. Kolyada, Li-Yorke sensitivity and other concepts of chaos. Ukrainian Mathematical Journal 56 (2004) 1242-1257. | Zbl 1075.37500

[26] S. Kolyada and L. Snoha, Some aspect of topological transitivity - a survey. Grazer Math. Ber. 334 (1997) 3-35. | Zbl 0907.54036

[27] P. Kurka, Topological and symbolic dynamics, Cours Spécialisés 11. Société Mathématique de France (2004). | MR 2041676 | Zbl 1038.37011

[28] J.P. Lasalle, Stability theory for difference equations. MAA Studies in Math., American Mathematical Society (1976). | MR 481689

[29] D. Lind and B. Marcus, An introduction to symbolic dynamics and coding. Cambidge University Press (1995). | MR 1369092 | Zbl 1106.37301

[30] S. Martinez, Hyperbolic dynamical systems with isolated points. Lect. Notes Math. 527 (1983) 47-64.

[31] W. Parry, Intrinsic markov chains. Trans. Amer. Math. Soc. 112 (1964) 55-56. | Zbl 0127.35301

[32] D. Ruelle, Strange attractors. Math. Intell. 2 (1980) 126-137. | Zbl 0487.58014

[33] Bau sen Du, On the nature of chaos, arXiv:math.DS/0602585 v1 (February 2006). | MR 837489

[34] S. Silverman, On maps with dense orbits and the definitions of chaos. Rocky Mountain Jour. Math. 22 (1992) 353-375. | Zbl 0758.58024

[35] M. Vellekoop and R. Berglund, On intervals, transitivity = chaos. Amer. Math. Monthly 101 (1994) 353-355. | Zbl 0886.58033

[36] P. Walters, An introduction to ergodic theory. Springer, Berlin (1982). | MR 648108 | Zbl 0475.28009

[37] B. Weiss, Topological transitivity and ergodic measures. Math. Syst. Theory 5 (1971) 71-5. | Zbl 0212.40103

[38] S. Wiggins, Global bifurcations and chaos. Springer, Berlin (1988). | MR 956468 | Zbl 0661.58001