We study the properties of the function which determines the number of representations of an integer as a sum of distinct Fibonacci numbers . We determine the maximum and mean values of for .
@article{ITA_2005__39_2_343_0, author = {Koc\'abov\'a, Petra and Mas\'akov\'a, Zuzana and Pelantov\'a, Edita}, title = {Integers with a maximal number of Fibonacci representations}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {39}, year = {2005}, pages = {343-359}, doi = {10.1051/ita:2005022}, mrnumber = {2142117}, zbl = {1074.11008}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2005__39_2_343_0} }
Kocábová, Petra; Masáková, Zuzana; Pelantová, Edita. Integers with a maximal number of Fibonacci representations. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) pp. 343-359. doi : 10.1051/ita:2005022. http://gdmltest.u-ga.fr/item/ITA_2005__39_2_343_0/
[1] An exercise on Fibonacci representations. RAIRO-Inf. Theor. Appl. 35 (2001) 491-498. | Numdam | Zbl 1005.68119
,[2] The smallest positive integer having representations as sums of distinct Fibonacci numbers, in Applications of Fibonacci numbers. Vol. 8, Kluwer Acad. Publ., Dordrecht (1999) 47-52. | Zbl 0957.11011
,[3] The number of representations of using distinct Fibonacci numbers, counted by recursive formulas. Fibonacci Quart. 37 (1999) 47-60. | Zbl 0949.11010
and ,[4] On representations of positive integers in the Fibonacci base. Preprint University of North Texas (2003). | MR 2094251
and ,