This short note reviews the main contributions of the Ph.D. thesis of Imre Simon. His graduate work had major impact on algebraic theory of automata and thirty years later we are in a good position to appreciate how sensitive he was in selecting good problems, and how clever in solving them!
@article{ITA_2005__39_1_297_0, author = {Th\'erien, Denis}, title = {Imre Simon : an exceptional graduate student}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {39}, year = {2005}, pages = {297-304}, doi = {10.1051/ita:2005017}, mrnumber = {2132593}, zbl = {1097.68580}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2005__39_1_297_0} }
Thérien, Denis. Imre Simon : an exceptional graduate student. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) pp. 297-304. doi : 10.1051/ita:2005017. http://gdmltest.u-ga.fr/item/ITA_2005__39_1_297_0/
[1] Dot-depth of star-free events. J. Comput. Syst. Sci. 5 (1971) 1-15. | Zbl 0217.29602
and ,[2] Automata, Languages and Machines, Vol. B. Academic Press, New York (1976). | MR 530383 | Zbl 0359.94067
,[3] A semigroup characterisation of dot-depth one languages. RAIRO Inform. Théor. 17 (1984) 321-330. | Numdam | Zbl 0522.68063
,[4] Counter-free automata. MIT Press, Cambridge, Massachussetts (1971). | MR 371538 | Zbl 0232.94024
and ,[5] Varieties of Formal Languages. Plenum, London (1986). | MR 912694 | Zbl 0632.68069
,[6] Polynomial closure of group languages and open sets of the hall topology. Theor. Comput. Sci. 169 (1996) 185-200. | Zbl 0877.68076
,[7] Polynomial closure and unambiguous product. Theor. Comput. Syst. 30 (1997) 1-39. | Zbl 0872.68119
and ,[8] On finite monoids having only trivial subgroups. Inform. Control 8 (1965) 190-194. | Zbl 0131.02001
,[9] Hierarchies of events with dot-depth one. Ph.D. thesis, University of Waterloo (1972).
,[10] Finite semigroup varieties of the form . J. Pure Appl. Algebra 36 (1985) 53-94. | Zbl 0561.20042
,[11] Partially ordered finite monoids and a theorem of I. Simon. J. Algebra 119 (1988) 393-399. | Zbl 0658.20035
and ,[12] Classification of finite monoids: The language approach. Theor. Comput. Sci. 14 (1981) 195-208. | Zbl 0471.20055
,[13] Graph congruences and wreath products. J. Pure Appl. Algebra 36 (1985) 205-212. | Zbl 0559.20042
and ,[14] Categories as algebra: An essential ingredient in the theory of monoids. J. Pure Appl. Algebra 48 (1987) 83-198. | Zbl 0627.20031
,