We prove that the pseudovariety of monoids of Krohn-Rhodes complexity at most is not finitely based for all . More specifically, for each pair of positive integers , we construct a monoid of complexity , all of whose -generated submonoids have complexity at most .
@article{ITA_2005__39_1_279_0, author = {Rhodes, John and Steinberg, Benjamin}, title = {Krohn-Rhodes complexity pseudovarieties are not finitely based}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {39}, year = {2005}, pages = {279-296}, doi = {10.1051/ita:2005016}, mrnumber = {2132592}, zbl = {1083.20050}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2005__39_1_279_0} }
Rhodes, John; Steinberg, Benjamin. Krohn-Rhodes complexity pseudovarieties are not finitely based. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) pp. 279-296. doi : 10.1051/ita:2005016. http://gdmltest.u-ga.fr/item/ITA_2005__39_1_279_0/
[1] Finite Semigroups and Universal Algebra. World Scientific, Singapore (1994). | MR 1331143 | Zbl 0844.20039
,[2] Hyperdecidable pseudovarieties and the calculation of semidirect products. Internat. J. Algebra Comput. 9 (1999) 241-261. | Zbl 1028.20038
,[3] Inevitable graphs: A proof of the Type II conjecture and some related decision procedures. Internat. J. Algebra Comput. 1 (1991) 127-146. | Zbl 0722.20039
,[4] Subsemigroups and complexity via the presentation lemma. J. Pure Appl. Algebra 101 (1995) 245-289. | Zbl 0836.20081
, , and ,[5] Automata, Languages and Machines. Academic Press, New York, Vol. A (1974); Vol. B (1976). | Zbl 0317.94045
,[6] On finite 0-simple semigroups and graph theory. Math. Syst. Theor. 2 (1968) 325-339. | Zbl 0177.03103
,[7] Idempotent pointlikes. Internat. J. Algebra Comput. (To appear). | MR 2104776 | Zbl 1080.20054
,[8] Stable pairs. Internat. J. Algebra Comput. (Submitted). | Zbl 1209.20051
,[9] Ash's type II Theorem, profinite topology and Mal'cev products: Part I. Internat. J. Algebra Comput. 1 (1991) 411-436. | Zbl 0791.20079
, , and ,[10] Algebraic theory of machines, I: Prime decomposition theorem for finite semigroups and machines. Trans. Amer. Math. Soc. 116 (1965) 450-464. | Zbl 0148.01002
and ,[11] Complexity of finite semigroups. Ann. Math. 88 (1968) 128-160. | Zbl 0162.03902
and ,[12] Lectures on the algebraic theory of finite semigroups and finite-state machines Chapters 1, 5-9 (Chapter 6 with M.A. Arbib), in The Algebraic Theory of Machines, Languages, and Semigroups, edited by M.A. Arbib. Academic Press, New York (1968).
, and ,[13] Varieties of Formal Languages. Plenum, New York (1986). | MR 912694 | Zbl 0632.68069
,[14] The fundamental lemma of complexity for arbitrary finite semigroups. Bull. Amer. Math. Soc. 74 (1968) 1104-1109. | Zbl 0185.04801
,[15] Kernel systems - A global study of homomorphisms on finite semigroups. J. Algebra 49 (1977) 1-45. | Zbl 0379.20054
,[16] Infinite iteration of matrix semigroups. I. Structure theorem for torsion semigroups. J. Algebra 98 (1986) 422-451. | Zbl 0584.20053
,[17] Infinite iteration of matrix semigroups. II. Structure theorem for arbitrary semigroups up to aperiodic morphism. J. Algebra 100 (1986) 25-137. | Zbl 0626.20050
,[18] Complexity pseudovarieties are not local; type II subsemigroups can fall arbitrarily in complexity. Internat. J. Algebra Comput. (Submitted). | MR 2258836 | Zbl 1105.20049
and ,[19] Lower bounds for complexity of finite semigroups. J. Pure Appl. Algebra 1 (1971) 79-95. | Zbl 0259.20051
and ,[20] Improved lower bounds for the complexity of finite semigroups. J. Pure Appl. Algebra 2 (1972) 13-71. | Zbl 0257.20059
and ,[21] A reduction theorem for complexity of finite semigroups. Semigroup Forum 10 (1975) 96-114. | Zbl 0303.20042
and ,[22] Local complexity of finite semigroups, in Algebra, Topology, and Category Theory (collection of papers in honor of Samuel Eilenberg). Academic Press, New York (1976) 149-168.
and ,[23] On the profinite topology on a free group. Bull. London Math. Soc. 25 (1993) 37-43. | Zbl 0811.20026
and ,[24] On an assertion of J. Rhodes and the finite basis and finite vertex rank problems for pseudovarieties. J. Pure Appl. Algebra 186 (2004) 91-107. | Zbl 1048.20037
,[25] On aperiodic relational morphisms. Semigroup Forum. (Accepted). | MR 2107191 | Zbl 1140.20044
,[26] Decomposition and complexity of finite semigroups. Semigroup Forum 3 (1971) 189-250. | Zbl 0226.20060
,[27] Complexity of two--class semigroups. Adv. Math. 11 (1973) 215-237.
,[28] Depth decomposition theorem. Chapter XI in [5].
,[29] Complexity of semigroups and morphisms. Chapter XII in [5].
,[30] Presentation lemma... the short form. (Unpublished 1995).
,[31] Group-complexity and reversals of finite semigroups. Math. Syst. Theor. 8 (1974/75) 235-242. | Zbl 0338.20085
,