In this paper we investigate how it is possible to recover an automaton from a rational expression that has been computed from that automaton. The notion of derived term of an expression, introduced by Antimirov, appears to be instrumental in this problem. The second important ingredient is the co-minimization of an automaton, a dual and generalized Moore algorithm on non-deterministic automata. We show here that if an automaton is then sufficiently “decorated”, the combination of these two algorithms gives the desired result. Reducing the amount of “decoration” is still the object of ongoing investigation.
@article{ITA_2005__39_1_217_0, author = {Lombardy, Sylvain and Sakarovitch, Jacques}, title = {How expressions can code for automata}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {39}, year = {2005}, pages = {217-237}, doi = {10.1051/ita:2005013}, mrnumber = {2132589}, zbl = {1102.68070}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2005__39_1_217_0} }
Lombardy, Sylvain; Sakarovitch, Jacques. How expressions can code for automata. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) pp. 217-237. doi : 10.1051/ita:2005013. http://gdmltest.u-ga.fr/item/ITA_2005__39_1_217_0/
[1] Partial derivatives of regular expressions and finite automaton constructions. Theor. Comput. Sci. 155 (1996) 291-319. | Zbl 0872.68120
,[2] Systèmes de transitions finis et sémantique des processus communiquants. Masson (1992). English Trans.: Finite Transitions Systems, Prentice-Hall (1994). | Zbl 0796.68141
,[3] From regular expressions to deterministic automata. Theor. Comput. Sci. 48 (1986) 117-126. | Zbl 0626.68043
and ,[4] Local languages and the Berry-Sethi algorithm. Theor. Comput. Sci. 155 (1996) 439-446. | Zbl 0872.68116
and ,[5] Regular expressions into finite automata. Theor. Comput. Sci. 120 (1993) 197-213. | Zbl 0811.68096
,[6] Derivatives of regular expressions. J. Assoc. Comput. Mach. 11 (1964) 481-494. | Zbl 0225.94044
,[7] Characterization of Glushkov automata. Theor. Comput. Sci. 233 (2000) 75-90. | Zbl 0952.68084
and ,[8] New finite automaton constructions based on canonical derivatives, in Pre-Proceedings of CIAA'00, edited by M. Daley, M. Eramian and S. Yu, Univ. of Western Ontario (2000) 36-43. | Zbl 0989.68077
and ,[9] Canonical derivatives, partial derivatives and finite automaton constructions. Theor. Comput. Sci. 289 (2002) 137-163. | Zbl 1061.68109
and ,[10] Regular Algebra And Finite Machines. Chapman and Hall (1971). | Zbl 0231.94041
,[11] The abstract theory of automata. Russian Mathematical Surveys 16 (1961) 1-53. | Zbl 0104.35404
,[12] Derivatives of rational expressions with multiplicity. Theor. Comput. Sci., to appear. (Journal version of Proc. MFCS 02, Lect. Notes Comput. Sci. 2420 (2002) 471-482.) | Zbl 1014.68085
and ,[13] Regular Expressions And State Graphs For Automata. IRE Trans. electronic computers 9 (1960) 39-47. | Zbl 0156.25501
and ,[14] A construction on automata that has remained hidden. Theor. Comput. Sci. 204 (1998) 205-231. | Zbl 0913.68137
,[15] Éléments de théorie des automates. Vuibert (2003). English Trans.: Cambridge University Press, to appear.
,[16] Regular expression search algorithm. Comm. Assoc. Comput. Mach. 11 (1968) 419-422. | Zbl 0164.46205
,[17] Theory Of Computation. Wiley (1987). | MR 1094567 | Zbl 0734.68001
,[18] Regular languages, in Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa. Elsevier 1 (1997) 41-111.
,