We associate with a word on a finite alphabet an episturmian (or Arnoux-Rauzy) morphism and a palindrome. We study their relations with the similar ones for the reversal of . Then when we deduce, using the sturmian words that are the fixed points of the two morphisms, a proof of a Galois theorem on purely periodic continued fractions whose periods are the reversal of each other.
@article{ITA_2005__39_1_207_0, author = {Justin, Jacques}, title = {Episturmian morphisms and a Galois theorem on continued fractions}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {39}, year = {2005}, pages = {207-215}, doi = {10.1051/ita:2005012}, mrnumber = {2132588}, zbl = {1126.68519}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2005__39_1_207_0} }
Justin, Jacques. Episturmian morphisms and a Galois theorem on continued fractions. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) pp. 207-215. doi : 10.1051/ita:2005012. http://gdmltest.u-ga.fr/item/ITA_2005__39_1_207_0/
[1] Une caractérisation simple des nombres de Sturm. J. Th. Nombres Bordeaux 10 (1998) 237-241. | Numdam | Zbl 0930.11051
,[2] Représentation géometrique de suites de complexité . Bull. Soc. Math. France 119 (1991) 199-215. | Numdam | Zbl 0789.28011
and ,[3] Recent results on extensions of Sturmian words. Internat. J. Algebra Comput. 12 (2002) 371-385. | Zbl 1007.68141
,[4] Autour du système de numération d'Ostrowski. Bull. Belg. Math. Soc. 8 (2001) 209-239. | Zbl 0994.68100
,[5] Théorie des Nombres. Tome 2, Librairie Scient. A. Hermann, Paris (1924). | JFM 45.1257.03
,[6] Harmonic and Gold Sturmian Words, preprint, Dipart. di Mat. G. Castelnuovo, Università degli Studi di Roma La Sapienza, 22/2003 (2003). | MR 2081350 | Zbl 1048.05002
and ,[7] Fine and Wilf's theorem for three periods and a generalization of Sturmian words. Theor. Comput. Sci. 218 (2001) 83-94. | Zbl 0916.68114
, and ,[8] Episturmian words and some constructions of de Luca and Rauzy. Theor. Comput. Sci. 255 (2001) 539-553. | Zbl 0981.68126
, and ,[9] Démonstration d'un théorème sur les fractions continues périodiques. Ann. Math. Pures Appl. de M. Gergonne 19 (1829) 294-301. | Numdam
,[10] On a paper by Castelli, Mignosi, Restivo. Theor. Inform. Appl. 34 (2000) 373-377. | Numdam | Zbl 0987.68056
,[11] Episturmian words and episturmian morphisms. Theor. Comput. Sci. 276 (2002) 281-313. | Zbl 1002.68116
and ,[12] Episturmian words: shifts, morphisms and numeration systems. Intern. J. Foundat. Comput. Sci. 15 (2004) 329-348. | Zbl 1067.68115
and ,[13] Algebraic Combinatorics on Words, edited by M. Lothaire. Cambridge University Press. Encyclopedia of Mathematics 90 (2002). | MR 1905123 | Zbl 1001.68093
,[14] On the number of Arnoux-Rauzy words. Acta Arith. 101 (2002) 121-129. | Zbl 1005.68117
and ,[15] Symbolic dynamics II: Sturmian trajectories. Amer. J. Math. 62 (1940) 1-42. | JFM 66.0188.03
and ,[16] Nombres algébriques et substitutions. Bull. Soc. Math. France 110 (1982) 147-178. | Numdam | Zbl 0522.10032
,[17] Mots infinis en arithmétique, in Automata on infinite words, edited by M. Nivat and D. Perrin. Lect. Notes Comput. Sci. 192 (1985) 165-171. | Zbl 0613.10044
,[18] A generalization of Sturmian sequences, combinatorial structure and transcendence. Acta Arithmetica 95 (2000) 167-184. | Zbl 0953.11007
and ,[19] Frequencies of factors in Arnoux-Rauzy sequences. Acta Arithmetica 96 (2001) 261-278. | Zbl 0973.11030
and ,[20] Une généralisation du théorème de Lagrange sur le développement en fraction continue. C. R. Acad. Sci. Paris I 327 (1998) 527-530. | Zbl 1039.11500
,