Let be the graph obtained from a given graph by subdividing each edge times. Motivated by a problem raised by Igor Pak [Mixing time and long paths in graphs, in Proc. of the 13th annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002) 321-328], we prove that, for any graph , there exist graphs with edges that are Ramsey with respect to .
@article{ITA_2005__39_1_191_0, author = {Donadelli, Jair and Haxell, Penny E. and Kohayakawa, Yoshiharu}, title = {A note on the Size-Ramsey number of long subdivisions of graphs}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {39}, year = {2005}, pages = {191-206}, doi = {10.1051/ita:2005019}, mrnumber = {2132587}, zbl = {1075.05054}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2005__39_1_191_0} }
Donadelli, Jair; Haxell, Penny E.; Kohayakawa, Yoshiharu. A note on the Size-Ramsey number of long subdivisions of graphs. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 39 (2005) pp. 191-206. doi : 10.1051/ita:2005019. http://gdmltest.u-ga.fr/item/ITA_2005__39_1_191_0/
[1] Explicit construction of linear sized tolerant networks. Discrete Math. 72 (1988) 15-19. | Zbl 0657.05068
and ,[2] Subdivided graphs have linear Ramsey numbers. J. Graph Theory 18 (1994) 343-347. | Zbl 0811.05046
,[3] The probabilistic method, 2nd edition, Ser. Discrete Math.Optim., Wiley-Interscience, John Wiley & Sons, New York, 2000. (With an appendix on the life and work of Paul Erdős.) | MR 1885388 | Zbl 0767.05001
and ,[4] On size Ramsey number of paths, trees, and circuits. I. J. Graph Theory 7 (1983) 115-129. | Zbl 0508.05047
,[5] On size Ramsey number of paths, trees and circuits. II. Mathematics of Ramsey theory, Springer, Berlin, Algorithms Combin. 5 (1990) 34-45. | Zbl 0735.05056
,[6] The Ramsey number of a graph with bounded maximum degree. J. Combin. Theory Ser. B 34 (1983) 239-243. | Zbl 0547.05044
, , and ,[7] Graph theory. Springer-Verlag, New York (1997). Translated from the 1996 German original. | MR 1411445 | Zbl 0873.05001
,[8] The size Ramsey number. Periodica Mathematica Hungarica 9 (1978) 145-161. | Zbl 0331.05122
, , and ,[9] On partition theorems for finite graphs, Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I. North-Holland, Amsterdam, Colloq. Math. Soc. János Bolyai 10 (1975) 515-527. | Zbl 0324.05124
and ,[10] A survey of results on the size Ramsey number, Paul Erdős and his mathematics, II (Budapest, 1999). Bolyai Soc. Math. Stud., János Bolyai Math. Soc., Budapest 11 (2002) 291-309. | Zbl 1027.05069
and ,[11] Expanding graphs contain all small trees. Combinatorica 7 (1987) 71-76. | Zbl 0624.05028
and ,[12] Partitioning complete bipartite graphs by monochromatic cycles. J. Combin. Theory Ser. B 69 (1997) 210-218. | Zbl 0867.05022
,[13] The size-Ramsey number of trees. Israel J. Math. 89 (1995) 261-274. | Zbl 0822.05049
and ,[14] The induced size-Ramsey number of cycles. Combin. Probab. Comput. 4 (1995) 217-239. | Zbl 0839.05073
, and ,[15] Embedding trees into graphs of large girth. Discrete Math. 216 (2000) 273-278. | Zbl 0958.05030
and ,[16] Ramsey numbers for trees of small maximum degree. Combinatorica 22 (2002) 287-320. Special issue: Paul Erdős and his mathematics. | Zbl 0997.05065
, and ,[17] On a conjecture about trees in graphs with large girth. J. Combin. Theory Ser. B 83 (2001) 221-232. | Zbl 1023.05035
,[18] Xin Ke, The size Ramsey number of trees with bounded degree. Random Structures Algorithms 4 (1993) 85-97. | Zbl 0778.05060
[19] Szemerédi's regularity lemma for sparse graphs, Foundations of computational mathematics (Rio de Janeiro, 1997). Springer, Berlin (1997) 216-230. | Zbl 0868.05042
,[20] Regular pairs in sparse random graphs. I. Random Structures Algorithms 22 (2003) 359-434. | Zbl 1022.05076
and ,[21] Szemerédi's regularity lemma and quasi-randomness, in Recent advances in algorithms and combinatorics. CMS Books Math./Ouvrages Math. SMC, Springer, New York 11 (2003) 289-351. | Zbl 1023.05108
and ,[22] Ramanujan graphs. Combinatorica 8 (1988) 261-277. | Zbl 0661.05035
, and ,[23] Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators. Problemy Peredachi Informatsii 24 (1988) 51-60. | Zbl 0708.05030
,[24] Mixing time and long paths in graphs, manuscript available at http://www-math.mit.edu/~pak/research.html#r (June 2001).
,[25] Mixing time and long paths in graphs, in Proceedings of the 13th annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2002) 321-328. | Zbl 1056.05135
,[26] Asymptotic size Ramsey results for bipartite graphs. SIAM J. Discrete Math. 16 (2002) 99-113 (electronic). | Zbl 1029.05103
,[27] Size Ramsey numbers of stars versus 4-chromatic graphs. J. Graph Theory 42 (2003) 220-233. | Zbl 1013.05052
,[28] Hamiltonian circuits in random graphs. Discrete Math. 14 (1976) 359-364. | Zbl 0322.05127
,[29] The Ramsey size number of dipaths. Discrete Math. 257 (2002) 173-175. | Zbl 1012.05116
,[30] On size Ramsey numbers of graphs with bounded degree. Combinatorica 20 (2000) 257-262. | Zbl 0959.05076
and ,[31] Regular partitions of graphs, in Problèmes combinatoires et théorie des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976). CNRS, Paris (1978) 399-401. | Zbl 0413.05055
,