This paper establishes computational equivalence of two seemingly unrelated concepts: linear conjunctive grammars and trellis automata. Trellis automata, also studied under the name of one-way real-time cellular automata, have been known since early 1980s as a purely abstract model of parallel computers, while linear conjunctive grammars, introduced a few years ago, are linear context-free grammars extended with an explicit intersection operation. Their equivalence implies the equivalence of several other formal systems, including a certain restricted class of Turing machines and a certain type of language equations, thus giving further evidence for the importance of the language family they all generate.
@article{ITA_2004__38_1_69_0, author = {Okhotin, Alexander}, title = {On the equivalence of linear conjunctive grammars and trellis automata}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {38}, year = {2004}, pages = {69-88}, doi = {10.1051/ita:2004004}, mrnumber = {2059029}, zbl = {1084.68079}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2004__38_1_69_0} }
Okhotin, Alexander. On the equivalence of linear conjunctive grammars and trellis automata. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 38 (2004) pp. 69-88. doi : 10.1051/ita:2004004. http://gdmltest.u-ga.fr/item/ITA_2004__38_1_69_0/
[1] Context-Free Languages and Pushdown Automata. Handbook of Formal Languages 1 (1997) 111-174. | MR 1469995 | Zbl 0900.68286
, and ,[2] On real-time cellular automata and trellis automata. Acta Inform. 21 (1984) 393-407. | MR 767316 | Zbl 0534.68039
and ,[3] The algebraic theory of context-free languages. Computer programming and formal systems (1963) 118-161. | MR 152391 | Zbl 0148.00804
and ,[4] Systolic trellis automata (I, II). Int. J. Comput. Math. 15 (1984) 195-212; 16 (1984) 3-22; preliminary version in: Research Rep. CS-81-34, Dept. of Computer Sci., U. of Waterloo, Canada (1981). | Zbl 0571.68042
, and ,[5] Systolic trellis automata: stability, decidability and complexity. Inform. Control 71 (1986) 218-230. | Zbl 0626.68048
, and ,[6] One-way bounded cellular automata. Inform. Control 44 (1980) 261-281. | MR 574487 | Zbl 0442.68082
,[7] Characterizations and computational complexity of systolic trellis automata. Theoret. Comput. Sci. 29 (1984) 123-153. | MR 742405 | Zbl 0536.68048
and ,[8] Sequential machine characterizations of trellis and cellular automata and applications. SIAM J. Comput. 14 (1985) 426-447. | MR 784748 | Zbl 0574.68044
, and ,[9] Conjunctive grammars. J. Autom. Lang. Comb. 6 (2001) 519-535; preliminary version in: Pre-proceedings of DCAGRS 2000, London, Ontario, Canada, July 27-29 (2000). | MR 1897299 | Zbl 1004.68082
,[10] Conjunctive grammars. and systems of language equations. Programming and Computer Software 28 (2002) 243-249. | MR 2023633 | Zbl 1036.68063
,[11] On the closure properties of linear conjunctive languages. Theoret. Comput. Sci. 299 (2003) 663-685. | MR 1973171 | Zbl 1042.68069
,[12] Whale Calf, a parser generator for conjunctive grammars, in Implementation and Application of Automata, Proc. CIAA 2002, Tours, France, July 3-5, 2002. Lect. Notes Comput. Sci. (2002). 2608 213-220. | Zbl 1033.68579
,[13] Boolean grammars, in Developments in Language Theory, Proc. DLT 2003, Szeged, Hungary, July 7-11, 2003. Lect. Notes Comput. Sci. 2710 (2003) 398-410. | MR 2054381 | Zbl 1037.68071
,[14] Cellular automata and formal languages, in Proc. 11th IEEE Annual Sympo. Switching and Automata Theory (1970) 216-224.
,[15] Real-time language recognition by one-dimensional cellular automata. J. Comput. Syst. Sci. 6 (1972) 233-252. | MR 309383 | Zbl 0268.68044
,[16] On real-time one-way cellular array. Theoret. Comput. Sci. 141 (1995) 331-335. | MR 1323161 | Zbl 0873.68114
,