We present a description of asymptotic behaviour of languages of bi-infinite words obtained by iterating morphisms defined on free monoids.
@article{ITA_2004__38_1_27_0, author = {Fory\'s, Wit}, title = {Asymptotic behaviour of bi-infinite words}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {38}, year = {2004}, pages = {27-48}, doi = {10.1051/ita:2004002}, mrnumber = {2059027}, zbl = {1082.68050}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2004__38_1_27_0} }
Foryś, Wit. Asymptotic behaviour of bi-infinite words. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 38 (2004) pp. 27-48. doi : 10.1051/ita:2004002. http://gdmltest.u-ga.fr/item/ITA_2004__38_1_27_0/
[1] Simplifications of homomorphism. Inform. Control 38 (1978) 298-309. | Zbl 0387.68062
and ,[2] The poset of retracts of a free monoid. Int. J. Comput. Math. 37 (1990) 45-48. | Zbl 0723.68060
and ,[3] On the periodicity of morphism on free monoid. RAIRO: Theoret. Informatics Appl. 20 (1986) 47-54. | Numdam | Zbl 0608.68065
and ,[4] Expanded subalphabets in the theories of languages and semigroups. Int. J. Comput. Math. 12 (1982) 113-123. | Zbl 0496.68050
,[5] Fixed and stationary -wors and -languages. The book of L, Springer-Verlag, Berlin (1986) 147-155. | Zbl 0586.68063
and ,[6] Combinatorics on words. Addison-Wesley (1983). | MR 675953 | Zbl 0514.20045
,[7] Sets of primitive words given by fixed points of mappings. Int. J. Comput. Math. (to appear). | MR 1833764 | Zbl 0992.68162
,[8] Limits and boundaries of words and tiling substitutions. LITP, TH93.12 (1993).
,[9] The boundary of iterated morphisms on free semi-groups. Int. J. Algebra Comput. 6 (1996) 229-260. | Zbl 0852.68074
,[10] On two-sided infinite fixed points of morphisms. Lect. Notes Comput. Sci. 1684 (1999) 488-499. | Zbl 0945.68115
and ,