A note on a conjecture of Duval and sturmian words
Mignosi, Filippo ; Zamboni, Luca Q.
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 36 (2002), p. 1-3 / Harvested from Numdam

We prove a long standing conjecture of Duval in the special case of sturmian words.

Publié le : 2002-01-01
DOI : https://doi.org/10.1051/ita:2002001
Classification:  68R15,  37B10
@article{ITA_2002__36_1_1_0,
     author = {Mignosi, Filippo and Zamboni, Luca Q.},
     title = {A note on a conjecture of Duval and sturmian words},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {36},
     year = {2002},
     pages = {1-3},
     doi = {10.1051/ita:2002001},
     mrnumber = {1928155},
     zbl = {1013.68152},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_2002__36_1_1_0}
}
Mignosi, Filippo; Zamboni, Luca Q. A note on a conjecture of Duval and sturmian words. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 36 (2002) pp. 1-3. doi : 10.1051/ita:2002001. http://gdmltest.u-ga.fr/item/ITA_2002__36_1_1_0/

[1] P. Arnoux and G. Rauzy, Représentation géométrique des suites de complexité 2n+1. Bull. Soc. Math. France 119 (1991) 199-215. | Numdam | MR 1116845 | Zbl 0789.28011

[2] R. Assous and M. Pouzet, Une Caractérisation des mots périodiques. Discrete Math. 25 (1979) 1-5. | MR 522741 | Zbl 0407.68087

[3] J.P. Duval, Relationship between the Period of a Finite Word and the Length of its Unbordered Segments. Discrete Math. 40 (1982) 31-44. | MR 676710 | Zbl 0475.68038

[4] A. Ehrenfeucht and D.M. Silberger, Periodicity and Unbordered Segments of words. Discrete Math. 26 (1979) 101-109. | MR 535237 | Zbl 0416.20051

[5] Lothaire, Algebraic Combinatorics on Words, Chap. 9 Periodicity, Chap. 3 Sturmian Words. Cambridge University Press (to appear). Available at http://www-igm.univ-mlv.fr/berstel | MR 1905123 | Zbl 1001.68093

[6] G. Pirillo, A rather curious characteristic property of standard Sturmian words, to appear in Algebraic Combinatorics, edited by G. Rota, D. Senato and H. Crapo. Springer-Verlag Italia, Milano (in press). | MR 1854493 | Zbl 0966.68167

[7] F. Mignosi and P. Séébold, Morphismes sturmiens et règles de Rauzy. J. Théorie des Nombres de Bordeaux 5 (1993) 221-233. | Numdam | MR 1265903 | Zbl 0797.11029

[8] G. Rauzy, Mots infinis en arithmétique, in Automata on Infinite Words, edited by M. Nivat and D. Perrin. Lecture Notes in Comput. Sci. 192 (1985) 167-171. | MR 814741 | Zbl 0613.10044

[9] R. Risley and L.Q. Zamboni, A generalization of Sturmian sequences; combinatorial structure and transcendence. Acta Arith. 95 (2000). | MR 1785413 | Zbl 0953.11007