We say that two languages and are conjugates if they satisfy the conjugacy equation for some language . We study several problems associated with this equation. For example, we characterize all sets which are conjugated a two-element biprefix set , as well as all two-element sets which are conjugates.
@article{ITA_2001__35_6_535_0,
author = {Cassaigne, Julien and Karhum\"aki, Juhani and Ma\v nuch, J\'an},
title = {On conjugacy of languages},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
volume = {35},
year = {2001},
pages = {535-550},
mrnumber = {1922294},
zbl = {1005.68121},
language = {en},
url = {http://dml.mathdoc.fr/item/ITA_2001__35_6_535_0}
}
Cassaigne, Julien; Karhumäki, Juhani; Maňuch, Ján. On conjugacy of languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) pp. 535-550. http://gdmltest.u-ga.fr/item/ITA_2001__35_6_535_0/
[1] and, Combinatorics of words, in Handbook of Formal Languages, Vol. 1, edited by G. Rozenberg and A. Salomaa. Springer (1997) 329-438. | MR 1469998
[2] , and, The commutation of finite sets: A challenging problem. Theoret. Comput. Sci. 273 (2002) 69-79. | MR 1872443 | Zbl 1014.68128
[3] , Regular algebra and finite machines. Chapman Hall (1971). | Zbl 0231.94041
[4] , Automata, languages and machines. Academic Press (1974). | Zbl 0317.94045
[5] , and, Independent systems of equations, Chap. 14 of Algebraic combinatorics on words, by M. Lothaire. Cambridge University Press (2002). | MR 1905123
[6] and, On commutation and primitive roots of codes. TUCS Technical Report 402 (2001).
[7] , Combinatorial and computational problems of finite sets of words, in Proc. of MCU'01. Springer, Lecture Notes in Comput. Sci. 2055 (2001) 69-81. | Zbl 0984.68118
[8] and, On the centralizer of a finite set, in Proc. of ICALP'00. Springer, Lecture Notes in Comput. Sci. 1853 (2000) 536-546. | Zbl 0973.68115
[9] , Language equations. Springer (1998). | MR 1724110 | Zbl 0926.68064
[10] , Combinatorics on words. Addison-Wesley (1983). | MR 675953 | Zbl 0514.20045
[11] and, A combinatorial problem in the theory of free monoids, in Combinatorial Mathematics and its Applications. Univ. North Carolina Press (1969) 128-144. | MR 251158 | Zbl 0221.20076
[12] , The problem of solvability of equations in a free semigroup. Mat. Sb. 103 (1977) 147-236 (English transl. in Math USSR Sb. 32 (1979) 129-198). | MR 470107 | Zbl 0396.20037
[13] , Codes conjugués. Inform. and Control 20 (1972) 222-231. | MR 345711 | Zbl 0254.94015
[14] , Satisfiability of word equations with constants is in PSPACE, in Proc. of FOCS'99. IEEE (1999) 495-500.
[15] , Codes et motifs. RAIRO: Theoret. Informatics Appl. 23 (1989) 425-444. | Numdam | MR 1036694 | Zbl 0689.68102