A morphism is -power-free if and only if is -power-free whenever is a -power-free word. A morphism is -power-free up to if and only if is -power-free whenever is a -power-free word of length at most . Given an integer , we prove that a binary morphism is -power-free if and only if it is -power-free up to . This bound becomes linear for primitive morphisms: a binary primitive morphism is -power-free if and only if it is -power-free up to
@article{ITA_2001__35_5_437_0, author = {Wlazinski, F.}, title = {A test-set for $k$-power-free binary morphisms}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {35}, year = {2001}, pages = {437-452}, mrnumber = {1908865}, zbl = {1010.68102}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2001__35_5_437_0} }
Wlazinski, F. A test-set for $k$-power-free binary morphisms. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) pp. 437-452. http://gdmltest.u-ga.fr/item/ITA_2001__35_5_437_0/
[1] Axel thue's work on repetitions in words, edited by P. Leroux and C. Reutenauer, Séries formelles et combinatoire algébrique. LaCIM, University of Québec at Montréal (1992) 65-80.
,[2] Axel thue's papers on repetitions in words: A translation, Technical Report 20. LaCIM, University of Québec at Montréal (1995).
,[3] A characterization of overlap-free morphisms. Discrete Appl. Math. 46 (1993) 275-281. | MR 1243728 | Zbl 0824.68093
and ,[4] Sharp characterizations of squarefree morphisms. Theoret. Comput. Sci. 18 (1982) 221-226. | MR 652471 | Zbl 0482.68085
,[5] On cube free -words generated by binary morphisms. Discrete Appl. Math. 5 (1983) 279-297. | MR 690339 | Zbl 0505.03022
,[6] On the -repetition freeness of length uniform morphisms over a binary alphabet. Discrete Appl. Math. 9 (1984) 297-300. | MR 763566 | Zbl 0547.68082
,[7] On the -freeness of morphisms on free monoids. Ann. Acad. Sci. Fenn. 61 (1986). | MR 869270 | Zbl 0604.20056
,[8] A characterization of power-free morphisms. Theoret. Comput. Sci. 38 (1985) 117-122. | MR 805137 | Zbl 0572.68066
,[9] Codes sans répétition, Ph.D. Thesis. LITP Université P. et M. Curie (1985).
,[10] A combinatorial problem in the theory of free monoids, edited by R.C. Bose and T.E. Dowling. Chapell Hill, North Carolina Press edition, Comb. Math. (1945) 112-144. | Zbl 0221.20076
and ,[11] Combinatorics on words, Vol. 17 of Encyclopedia of Mathematics, Chap. 9, Equations on words. Addison-Wesley (1983). Reprinted in 1997 by Cambridge University Press in the Cambridge Mathematical Library. | Zbl 0514.20045
,[12] Algebraic combinatorics on words. Cambridge University Press (to appear). | MR 1905123 | Zbl 1001.68093
,[13] Primitive morphisms. Inform. Process. Lett. 64 (1997) 277-281. | MR 1608236
,[14] Recurrent geodesics on a surface of negative curvature. Trans. Amer. Math. Soc. 22 (1921) 84-100. | JFM 48.0786.06 | MR 1501161
,[15] Characterization of test-sets for overlap-free morphisms. Discrete Appl. Math. 98 (1999) 151-157. | MR 1723693 | Zbl 0946.68114
and ,[16] About cube-free morphisms, edited by H. Reichel and S. Tison, STACS 2000. Springer-Verlag, Lecture Notes in Comput. Sci. 1770 (2000) 99-109. | MR 1781724 | Zbl 0959.68532
and ,[17] Some results on -power-free morphisms. Theoret. Comput. Sci. 273 (2002) 119-142. | MR 1872446 | Zbl 1014.68127
and ,[18] Sequences generated by infinitely iterated morphisms. Discrete Appl. Math. 11 (1985) 255-264. | MR 792893 | Zbl 0583.20047
,[19] Uber unendliche Zeichenreihen. Videnskapsselskapets Skrifter, I. Mat.-naturv. Klasse, Kristiania (1906) 1-22. | JFM 39.0283.01
,[20] Uber die gegenseitige Lage gleigher Teile gewisser Zeichenreihen. Videnskapsselskapets Skrifter, I. Mat.-naturv. Klasse, Kristiania (1912) 1-67. | JFM 44.0462.01
,