Atoms and partial orders of infinite languages
Kuich, Werner ; Sauer, N. W.
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001), p. 389-401 / Harvested from Numdam

We determine minimal elements, i.e., atoms, in certain partial orders of factor closed languages under . This is in analogy to structural Ramsey theory which determines minimal structures in partial orders under embedding.

Publié le : 2001-01-01
Classification:  68R15,  05C55
@article{ITA_2001__35_4_389_0,
     author = {Kuich, Werner and Sauer, N. W.},
     title = {Atoms and partial orders of infinite languages},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {35},
     year = {2001},
     pages = {389-401},
     mrnumber = {1880807},
     zbl = {1112.68435},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_2001__35_4_389_0}
}
Kuich, Werner; Sauer, N. W. Atoms and partial orders of infinite languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) pp. 389-401. http://gdmltest.u-ga.fr/item/ITA_2001__35_4_389_0/

[1] A. De Luca and St. Varrichio, Finiteness and Regularity in Semigroups and Formal Languages. Springer (1999). | MR 1696498 | Zbl 0935.68056

[2] H. Furstenberg, Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, Princeton (1981). | MR 603625 | Zbl 0459.28023

[3] M. Pouzet and N. Sauer, Edge partitions of the Rado graph. Combinatorica 16 (1996) 1-16. | MR 1433638 | Zbl 0881.05095

[4] F.P. Ramsey, On a problem of formal logic. Proc. London Math. Soc. 30 (1930) 264-286. | JFM 55.0032.04

[5] N. Sauer, Coloring finite substructures of countable structures. The Mathematics of Paul Erdős, X. Bolyai Mathematical Society (to appear). | MR 1954742 | Zbl 1023.03042

[6] S. Yu, Regular Languages. In: Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa, Springer (1997). | MR 1469994