We determine minimal elements, i.e., atoms, in certain partial orders of factor closed languages under . This is in analogy to structural Ramsey theory which determines minimal structures in partial orders under embedding.
@article{ITA_2001__35_4_389_0,
author = {Kuich, Werner and Sauer, N. W.},
title = {Atoms and partial orders of infinite languages},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
volume = {35},
year = {2001},
pages = {389-401},
mrnumber = {1880807},
zbl = {1112.68435},
language = {en},
url = {http://dml.mathdoc.fr/item/ITA_2001__35_4_389_0}
}
Kuich, Werner; Sauer, N. W. Atoms and partial orders of infinite languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) pp. 389-401. http://gdmltest.u-ga.fr/item/ITA_2001__35_4_389_0/
[1] and, Finiteness and Regularity in Semigroups and Formal Languages. Springer (1999). | MR 1696498 | Zbl 0935.68056
[2] , Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, Princeton (1981). | MR 603625 | Zbl 0459.28023
[3] and, Edge partitions of the Rado graph. Combinatorica 16 (1996) 1-16. | MR 1433638 | Zbl 0881.05095
[4] , On a problem of formal logic. Proc. London Math. Soc. 30 (1930) 264-286. | JFM 55.0032.04
[5] , Coloring finite substructures of countable structures. The Mathematics of Paul Erdős, X. Bolyai Mathematical Society (to appear). | MR 1954742 | Zbl 1023.03042
[6] , Regular Languages. In: Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa, Springer (1997). | MR 1469994