We determine minimal elements, i.e., atoms, in certain partial orders of factor closed languages under . This is in analogy to structural Ramsey theory which determines minimal structures in partial orders under embedding.
@article{ITA_2001__35_4_389_0, author = {Kuich, Werner and Sauer, N. W.}, title = {Atoms and partial orders of infinite languages}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {35}, year = {2001}, pages = {389-401}, mrnumber = {1880807}, zbl = {1112.68435}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2001__35_4_389_0} }
Kuich, Werner; Sauer, N. W. Atoms and partial orders of infinite languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) pp. 389-401. http://gdmltest.u-ga.fr/item/ITA_2001__35_4_389_0/
[1] Finiteness and Regularity in Semigroups and Formal Languages. Springer (1999). | MR 1696498 | Zbl 0935.68056
and ,[2] Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, Princeton (1981). | MR 603625 | Zbl 0459.28023
,[3] Edge partitions of the Rado graph. Combinatorica 16 (1996) 1-16. | MR 1433638 | Zbl 0881.05095
and ,[4] On a problem of formal logic. Proc. London Math. Soc. 30 (1930) 264-286. | JFM 55.0032.04
,[5] Coloring finite substructures of countable structures. The Mathematics of Paul Erdős, X. Bolyai Mathematical Society (to appear). | MR 1954742 | Zbl 1023.03042
,[6] Regular Languages. In: Handbook of Formal Languages, edited by G. Rozenberg and A. Salomaa, Springer (1997). | MR 1469994
,