We answer to a question of De Luca and Restivo whether there exists a circular code which is maximal as circular code and not as code.
@article{ITA_2001__35_4_351_0, author = {Guesnet, Yannick}, title = {Maximal circular codes versus maximal codes}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {35}, year = {2001}, pages = {351-365}, mrnumber = {1880804}, zbl = {1005.94014}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2001__35_4_351_0} }
Guesnet, Yannick. Maximal circular codes versus maximal codes. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) pp. 351-365. http://gdmltest.u-ga.fr/item/ITA_2001__35_4_351_0/
[1] Theory of Codes. Academic Press (1985). | MR 797069 | Zbl 0587.68066
and ,[2] Codes, Dissertation présentée pour l'obtention de grade légal de docteur en sciences. Université de Mons-Hainaut (1991).
,[3] On maximal codes with bounded synchronization delay. Theoret. Comput. Sci., 204 (1998) 11-28. | MR 1637488 | Zbl 0913.68160
,[4] On some properties of very pure codes. Theoret. Comput. Sci., 10 (1980) 157-170. | MR 551602 | Zbl 0421.68078
and ,[5] On codes with finite interpreting delay: A defect theorem. Theoret. Informatics Appl., 34 (2000) 47-59. | Numdam | MR 1771129 | Zbl 0978.94047
,[6] Codes et interprétations, Thèse de doctorat. Université de Rouen (2001). | MR 1879770
,[7] On maximal codes with finite interpreting delay. Theoret. Comput. Sci., (to appear). | Zbl 1050.68040
,[8] Une théorie algébrique du codage, in: Séminaire Dubreil-Pisot 1955-56 Institut H. Poincaré (1956), Exposé n15. | Numdam | MR 75169
,