The depth hierarchy results for monotone circuits of Raz and McKenzie [5] are extended to the case of monotone circuits of semi-unbounded fan-in. It follows that the inclusions are proper in the monotone setting, for every .
@article{ITA_2001__35_3_277_0, author = {Johannsen, Jan}, title = {Depth lower bounds for monotone semi-unbounded fan-in circuits}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {35}, year = {2001}, pages = {277-286}, mrnumber = {1869218}, zbl = {1052.68053}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2001__35_3_277_0} }
Johannsen, Jan. Depth lower bounds for monotone semi-unbounded fan-in circuits. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 35 (2001) pp. 277-286. http://gdmltest.u-ga.fr/item/ITA_2001__35_3_277_0/
[1] Two applications of inductive counting for complementation problems. SIAM J. Comput. 18 (1989) 559-578. | MR 996836 | Zbl 0678.68031
, , , and ,[2] Monotone complexity, in Boolean Function Complexity, edited by M.S. Paterson. Cambridge University Press (1992) 57-75. | MR 1211867 | Zbl 0766.68040
and ,[3] Monotone circuits for connectivity require super-logarithmic depth. SIAM J. Discrete Math. 3 (1990) 255-265. | MR 1039296 | Zbl 0695.94021
and ,[4] Communication Complexity. Cambridge University Press (1997). | MR 1426129 | Zbl 0869.68048
and ,[5] Separation of the monotone hierarchy. Combinatorica 19 (1999) 403-435. | MR 1723255 | Zbl 0977.68037
and ,[6] Properties that characterize LOGCFL. J. Comput. System Sci. 43 (1991) 380-404. | MR 1130778 | Zbl 0776.68046
,