@article{ITA_2000__34_6_585_0,
author = {Devolder, Jeanne},
title = {Codes g\'en\'erateurs minimaux de langages de mots bi-infinis},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
volume = {34},
year = {2000},
pages = {585-596},
mrnumber = {1844720},
zbl = {0990.94020},
language = {fr},
url = {http://dml.mathdoc.fr/item/ITA_2000__34_6_585_0}
}
Devolder, Jeanne. Codes générateurs minimaux de langages de mots bi-infinis. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 34 (2000) pp. 585-596. http://gdmltest.u-ga.fr/item/ITA_2000__34_6_585_0/
[1] et , Theory of codes. Academic Press, Orlando (1985). | MR 797069 | Zbl 0587.68066
[2] , Automates sur les mots bi-infinis. Thesis, University of Paris VII, France (1986).
[3] , Codes, Chapter 7, Algebraic Combinatorics on words, edited by M. Lothaire (to appear).
[4] , Comportement des codes vis-à-vis des mots infinis et bi-infinis. Théorie des Automates et Applications, edited by D. Krob. Rouen, France (1991) 75-90.
[5] et , Finitely generated biω-langages, Theoret. Comput. Sci. 85 (1991) 33-52. | MR 1118128 | Zbl 0745.68066
[6] et , Finitary codes for biinfinite words. RAIRO: Theoret. Informaties Appl. 26 (1992) 363-386. | Numdam | MR 1173175 | Zbl 0754.68066
[7] , Precircular codes and periodic bi-infinite words. Inform. and Comput. 107 (1993) 185-201. | MR 1251618 | Zbl 0790.94007
[8] , Codes, mots infinis et bi-infinis. Ph. D. Thesis, University of Lille I, France (1993).
[9] , , et , Codes and infinite words. Acta Cybernet. 11 (1994) 241-256. | MR 1302730 | Zbl 0938.68691
[10] et , Langages algébriques de mots bi-infinis. Theoret. Comput Sci. 86 (1991) 277-323. | MR 1122792 | Zbl 0742.68039
[11] , Circular codes and synchronisation. Internat J. Comput Inform. Sci. 5 (1976) 201-208. | MR 520989 | Zbl 0401.68050
[12] , Prefix-free languages as ω-generators. Inform. Process: Lett. 37 (1991) 61-65. | MR 1093104 | Zbl 0714.68049
[13] et , Ensembles reconnaissables de mots bi-infinis, in Proc. 14e ACM Symp. on Theory of Computing, Vol. 005 (1982) 47-59.