Cutwidth of the r-dimensional mesh of d-ary trees
Vrťo, Imrich
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 34 (2000), p. 515-519 / Harvested from Numdam
@article{ITA_2000__34_6_515_0,
     author = {Vr\v to, Imrich},
     title = {Cutwidth of the $r$-dimensional mesh of $d$-ary trees},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     volume = {34},
     year = {2000},
     pages = {515-519},
     mrnumber = {1844716},
     zbl = {0976.05059},
     language = {en},
     url = {http://dml.mathdoc.fr/item/ITA_2000__34_6_515_0}
}
Vrťo, Imrich. Cutwidth of the $r$-dimensional mesh of $d$-ary trees. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 34 (2000) pp. 515-519. http://gdmltest.u-ga.fr/item/ITA_2000__34_6_515_0/

[1] D. Barth, Réseaux d'Interconnexion: Structures et Communications. PhD. Thesis. LABRI, Université Bordeaux I, France (1994).

[2] D. Barth, Bandwidth and cutwidth of the mesh of d-ary trees, in Proc, 2nd Intl. Euro-Par Conference, edited by L. Bougé et al. Springer Verlag, Berlin, Lecture Notes in Comput. Sci. 1123 (1996) 243-246.

[3] M. M. Eshagian and V. K. Prasanna, Parallel geometric algorithms for digital pictures on mesh of trees, in Proc. 27th Annual IEEE Symposium on Foundation of Computer Science. IEEE Computer Society Press, Los Alamitos (1986) 270-273.

[4] F. T. Leighton, Complexity Issues in VLSI. MIT Press, Cambridge (1983).

[5] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, and Hypercubes, Morgan Kaufmann Publishers, San Mateo (1992). | MR 1137272 | Zbl 0743.68007

[6] T. Lengauer, Upper and Lower Bounds for the Min Cut Linear Arrangenents Problem on Trees. SIAM J. Algebraic Discrete Methods 3 (1982) 99-113. | MR 644961 | Zbl 0489.68060

[7] A. D. Lopez and H. F. S. Law, A Dense Gâte Matrix Layout Method for MOS VLSI. IEEE Trans. Electr. Dev. 27 (1980) 1671-1675.

[8] K. Nakano, Linear layout of generalized hypercubes, in Proc. 19th Intl. Workshop on Graph-Theoretic Concepts in Computer Science. Springer Verlag, Berlin, Lecture Notes in Comput. Sci. 790 (1994) 364-375. | MR 1286286

[9] A. Raspaud, O. Sýkora and I. Vrťo, Cutwidth of the de Bruijn Graph. RAIRO Theoret. Informatics Appl. 26 (1996) 509-514. | Numdam | MR 1377028 | Zbl 0880.05054

[10] M. Yannakakis, A Polynomial Algorithm for the Min Cut Linear Arrangement of Trees. J. ACM 32 (1985) 950-988. | MR 810346 | Zbl 0633.68063