@article{ITA_2000__34_4_297_0, author = {Honkala, Juha}, title = {A Kleene-Sch\"utzenberger theorem for Lindenmayerian rational power series}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {34}, year = {2000}, pages = {297-305}, mrnumber = {1809862}, zbl = {0970.68086}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2000__34_4_297_0} }
Honkala, Juha. A Kleene-Schützenberger theorem for Lindenmayerian rational power series. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 34 (2000) pp. 297-305. http://gdmltest.u-ga.fr/item/ITA_2000__34_4_297_0/
[1] Rational Series and Their Languages. Springer, Berlin (1988). | MR 971022 | Zbl 0668.68005
and ,[2] Automata, Languages and Machines, Vol. A. Academic Press, New York (1974). | MR 530382 | Zbl 0317.94045
,[3] A Kleene theorem for Lindenmayerian algebraic power series. J. Autom. Lang. Comb. 5 (2000) 109-122. | MR 1772775 | Zbl 0959.68056
and ,[4] On Lindenmayerian series in complete semirings, edited by G. Rozenberg and A. Salomaa, Developments in Language Theory. World Scientific, Singapore (1994) 179-192.
,[5] An iteration property of Lindenmayerian power series, edited by J. Karhumäki, H. Maurer and G. Rozenberg, Results and Trends in Theoretical Computer Science. Springer, Berlin (1994) 159-168. | MR 1286964
,[6] On morphically generated formal power series. Theoret. Informatics Appl. 29 (1995) 105-127. | Numdam | MR 1329278 | Zbl 0816.68077
,[7] On the decidability of some équivalence problems for L algebraic series. Internat J. Algebra Comput. 7 (1997) 339-351. | MR 1448330 | Zbl 0879.68066
,[8] On Lindenmayerian rational subsets of monoids. Theoret. Informaties Appl. 31 (1997) 81-96. | Numdam | MR 1460458 | Zbl 0876.68066
,[9] On Lindenmayerian algebraic sequences. Theoret. Comput. Sci. 183 (1997) 143-154. | MR 1468454 | Zbl 0896.68087
,[10] Decision problems concerning a power series generalization of DT0L systems. Fund. Inform. 32 (1997) 341-348. | MR 1657259 | Zbl 0920.68065
,[11] On algebraicness of D0L power series. J. Univ. Comput. Sci. 5 (1999) 11-19. | MR 1725604
,[12] On D0L power series. Theoret. Comput. Sci. (to appear). | MR 1774390 | Zbl 0945.68106
,[13] On sequences defined by D0L power series. Theoret. Informatics Appl. 33 (1999) 125-132. | Numdam | MR 1707966 | Zbl 0946.68077
,[14] On a power series generalization of ET0L languages. Fund. Inform. 25 (1996) 257-270. | MR 1389928 | Zbl 0843.68051
and ,[15] On Lindenmayerian algebraic power series. Theoret. Comput. Sci. 183 (1997) 113-142. | MR 1468453 | Zbl 0896.68086
and ,[16] Lindenmayer systems generalized to formal power series and their growth functions, edited by G. Rozenberg and A. Salomaa, Developments in Language Theory. World Scientific, Singapore (1994) 171-178.
,[17] Semirings, Automata, Languages. Springer, Berlin (1986). | MR 817983 | Zbl 0582.68002
and ,[18] The Mathematical Theory of L Systems. Academic Press, New York (1980). | MR 561711 | Zbl 0508.68031
and ,[19] Handbook of Formal Languages, Vols. 1-3. Springer, Berlin (1997). | MR 1469992 | Zbl 0866.68057
and ,[20] Automata-Theoretic Aspects of Formal Power Series. Springer, Berlin (1978). | MR 483721 | Zbl 0377.68039
and ,