@article{ITA_2000__34_2_157_0, author = {Zakharov, Vladimir A.}, title = {On the decidability of the equivalence problem for monadic recursive programs}, journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications}, volume = {34}, year = {2000}, pages = {157-171}, mrnumber = {1774307}, zbl = {0962.68091}, language = {en}, url = {http://dml.mathdoc.fr/item/ITA_2000__34_2_157_0} }
Zakharov, Vladimir A. On the decidability of the equivalence problem for monadic recursive programs. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 34 (2000) pp. 157-171. http://gdmltest.u-ga.fr/item/ITA_2000__34_2_157_0/
[1] A decidable properties of monadic functional schemes. J. ACM 20 (1973) 489-499. | MR 400763 | Zbl 0289.68036
, and ,[2] Recursive applicative program schemes, in Handbook of Theoretical Computer Science, edited by J. van Leeuwen, Vol. B (1994) 459-492. | MR 1127194 | Zbl 0900.68095
,[3] New techniques for proving the decidability of equivalence problems. Lecture Notes in Comput Sci. 317 (1988) 162-175. | MR 1023634 | Zbl 0662.68079
,[4] Theory of programs. Unpublished notes. Vienna: IBM Seminar (1969).
and ,[5] Equivalence problems for deterministic languages and monadic recursion schemes. J. Comput. System Sci. 14 (1977) 362-399. | MR 443445 | Zbl 0358.68109
,[6] Program schemes, recursion schemes and formal languages. J. Comput System Sci. 7 (1973) 119-160. | MR 315930 | Zbl 0277.68010
and ,[7] The complexity of equivalence problem for simple programs. J. ACM 28 (1981) 535-560. | MR 624732 | Zbl 0462.68023
and ,[8] Decidable problems for the reinforced programs. J. ACM 32 (1985) 466-483. | MR 831869 | Zbl 0629.68010
,[9] Dynamic logics, in Handbook of Philosophical Logics, edited by D. Gabbay and F. Guenthner (1984) 497-604. | MR 844605 | Zbl 0875.03076
,[10] The equivalence of multi-tape finite automata. Theoret. Comput. Sci. 78 1991) 347-355. | MR 1095985 | Zbl 0727.68063
and ,[11] Reversal-bounded multicounter machines and their decision problems. J. ACM 25 (1978) 116-133. | MR 461988 | Zbl 0365.68059
,[12] On the equivalence of automata over semigroup. Theoretic Cybernetics 6 (1970) 3-71 (in Russian).
,[13] On formalized computer programs. J. Comput. System Sci. 4 (1970) 220-249. | MR 275717 | Zbl 0209.18704
, and ,[14] Meta-linear schemes with constant assignments. Programmirovanije, The Journal of Programming and Software Engineering (1985) 29-38 (in Russian).
,[15] Hard sets method and semilinear reservoir method with applications. Lecture Notes in Comput. Sci. 1099 (1996) 219-231. | MR 1464451 | Zbl 1046.68569
,[16] Programs schemata, Machine Intelligence. Edinburgh: Univ. Press, Vol. 3 (1968) 19-31.
,[17] Decision problems in computational models. SIGPLAN Notices 7 (1972) 74-82.
,[18] Finite automata and their decision problems. IBM J. Res. Develop. 3 (1959) 114-125. | MR 103795 | Zbl 0158.25404
and ,[19] Classes of recurcively enumerable sets and their decision problems. Trans. Amer. Math. Soc. 74 (1953). | MR 53041 | Zbl 0053.00301
,[20] On Ianov's program schemata. J. ACM 11 (1964) 1-9. | MR 166097 | Zbl 0121.12107
,[21] An algorithm deciding functional equivalence in a new class of program schemata. Theoret. Comput. Sci. 71 (1990) 265-279. | MR 1062597 | Zbl 0698.68016
,[22] Tree equivalence of linear recursive schemata is polynomial-time decidable. Inform. Process. Lett. 13 (1981) 147-153. | MR 651463 | Zbl 0479.68052
,[23] The equivalence problem for deterministic pushdown automata is decidable. Lecture Notes in Comput. Sci. 1256 (1997) 271-281. | MR 1616225
,[24] The extended equivalence problem for a class of non-real-time deterministic pushdown automata. Acta Informatica 32 (1995) 395-413. | MR 1345884 | Zbl 0827.68076
and ,[25] Deterministic one-counter automata. J. Comput. System Sci. 10 (1975) 340-350. | MR 379149 | Zbl 0307.68038
and ,[26] To the equivalence and transformations of program schemata. Rep. Soviet Acad. Sci. 113 (1957) 39-42 (in Russian). | MR 91539 | Zbl 0080.11502
,[27] The equivalence of monadic linear functional programs is decidable in polynomial time, in Proc. of the 2nd Conf. on Discrete Models in Control System Theory (1997) 35-39 (in Russian).
,